A Review of Computational Methods for Finding Non-Coding RNA Genes

被引:15
作者
Abbas, Qaisar [1 ]
Raza, Syed Mansoor [1 ]
Biyabani, Azizuddin Ahmed [1 ]
Jaffar, Muhammad Arfan [1 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Comp & Informat Sci, Riyadh 11432, Saudi Arabia
关键词
gene; DNA; non-coding RNA; micro RNA; computational intelligence; support vector machine; Bayesian networks; genetic algorithm; neural network; deep learning; MICRORNA PRECURSORS; SEQUENCE FEATURES; IDENTIFICATION; PREDICTION; CLASSIFICATION; DATABASE; MACHINE;
D O I
10.3390/genes7120113
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools.
引用
收藏
页数:14
相关论文
共 59 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Arslan A, 2015, SIG PROCESS COMMUN, P1668, DOI 10.1109/SIU.2015.7130172
[3]   microPred: effective classification of pre-miRNAs for human miRNA gene prediction [J].
Batuwita, Rukshan ;
Palade, Vasile .
BIOINFORMATICS, 2009, 25 (08) :989-995
[4]   Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
BIOINFORMATICS, 2004, 20 (17) :2911-2917
[5]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[6]   A computational approach to identify genes for functional RNAs in genomic sequences [J].
Carter, RJ ;
Dubchak, I ;
Holbrook, SR .
NUCLEIC ACIDS RESEARCH, 2001, 29 (19) :3928-3938
[7]  
Chen S, 2016, IEEE ACM T COMPUT BI, V36, P1
[8]   RNALOSS: a web server for RNA locally optimal secondary structures [J].
Clote, P .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W600-W604
[9]   EMBL Nucleotide Sequence Database: developments in 2005 [J].
Cochrane, Guy ;
Aldebert, Philippe ;
Althorpe, Nicola ;
Andersson, Mikael ;
Baker, Wendy ;
Baldwin, Alastair ;
Bates, Kirsty ;
Bhattacharyya, Sumit ;
Browne, Paul ;
van den Broek, Alexandra ;
Castro, Matias ;
Duggan, Karyn ;
Eberhardt, Ruth ;
Faruque, Nadeem ;
Gamble, John ;
Kanz, Carola ;
Kulikova, Tamara ;
Lee, Charles ;
Leinonen, Rasko ;
Lin, Quan ;
Lombard, Vincent ;
Lopez, Rodrigo ;
McHale, Michelle ;
McWilliam, Hamish ;
Mukherjee, Gaurab ;
Nardone, Francesco ;
Pastor, Maria Pilar Garcia ;
Sobhany, Siamak ;
Stoehr, Peter ;
Tzouvara, Katerina ;
Vaughan, Robert ;
Wu, Dan ;
Zhu, Weimin ;
Apweiler, Rolf .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D10-D15
[10]   Non-coding RNAs in human disease [J].
Esteller, Manel .
NATURE REVIEWS GENETICS, 2011, 12 (12) :861-874