A flexible and stretchable photonic crystal sensor for biosensing and tactile sensing

被引:8
作者
Peng, Wang [1 ,2 ,3 ,4 ]
Huang, Bing [5 ]
Huang, Xuanxuan [1 ]
Song, Han [6 ]
Liao, Qingxi [1 ,4 ]
机构
[1] Huazhong Agr Univ, Coll Engn, Wuhan 430070, Peoples R China
[2] Chinese Acad Agr Sci, Shenzhen Branch, Guangdong Lab Lingnan Modern Agr, Genome Anal Lab,Minist Agr,Agr Genom Inst Shenzhe, Shenzhen 518000, Peoples R China
[3] Huazhong Agr Univ, Shenzhen Inst Nutr & Hlth, Wuhan 430070, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab Agr Equipment Midlower Yangtze River, Wuhan 430070, Peoples R China
[5] Tech Off, 78170 Factory, Chengdu 610504, Peoples R China
[6] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexible and stretchable photonic crystal; Tactile sensing; Biosensing; Nanoreplica molding; PEROVSKITE; NANOCAVITY;
D O I
10.1016/j.heliyon.2022.e11697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biosensing and tactile sensing are considered to be essential functions for intelligent diagnostic medical robot. In this paper, biosensing and tactile sensing had been demonstrated with a single photonic crystal structure. The flexible and stretchable photonic crystal structure consists of PDMS as the flexible substrate and TiO2 as the guided layer, and the nanograting structure was realized by nanoreplica molding. For biosensing experiment, a sensitivity of 93 nm/RIU is verified with ambient environment RI variance simulation results. For tactile sensing experiment, the highest resolution for strain sensing is 0.1%, and the minimum detected scale of the grating period variation is 0.1 nm. The TiO2/PDMS structure based flexible and stretchable photonic crystal sensor demonstrates highly sensitivity and potentially cost effective for biosensing and tactile sensing, and it is promising in the area of intelligent diagnostic medical robot.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] Novel Design for the Temperature Sensing Using Annular Photonic Crystals
    Abadla, Mazen M.
    Elsayed, Hussein A.
    Mehaney, Ahmed
    [J]. SILICON, 2021, 13 (12) : 4737 - 4745
  • [2] Detection of toluene traces in exhaled breath by using a 1D PC as a biomarker for lung cancer diagnosis
    Ahmed, Ashour M.
    Mehaney, Ahmed
    Elsayed, Hussein A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06)
  • [3] High-Q photonic nanocavity in a two-dimensional photonic crystal
    Akahane, Y
    Asano, T
    Song, BS
    Noda, S
    [J]. NATURE, 2003, 425 (6961) : 944 - 947
  • [4] Photonic crystal nanocavity with a Q factor exceeding eleven million
    Asano, Takashi
    Ochi, Yoshiaki
    Takahashi, Yasushi
    Kishimoto, Katsuhiro
    Noda, Susumu
    [J]. OPTICS EXPRESS, 2017, 25 (03): : 1769 - 1777
  • [5] 2D PHOTONIC CRYSTAL CANTILEVER RESONATOR PRESSURE SENSOR
    Bahaddur, Indira
    Tejaswini, M. R.
    Kumar, Santhosh T. C.
    Sharan, Preeta
    Srikanth, P. C.
    [J]. 2019 WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2019,
  • [6] Sensitivity model for predicting photonic crystal biosensor performance
    Block, Ian D.
    Ganesh, Nikhil
    Lu, Meng
    Cunningham, Brian T.
    [J]. IEEE SENSORS JOURNAL, 2008, 8 (3-4) : 274 - 280
  • [7] Recent advances in photonic crystal optical devices: A review
    Butt, M. A.
    Khonina, S. N.
    Kazanskiy, N. L.
    [J]. OPTICS AND LASER TECHNOLOGY, 2021, 142
  • [8] Two-Dimensional Photonic Crystal Chemical and Biomolecular Sensors
    Cai, Zhongyu
    Smith, Natasha L.
    Zhang, Jian-Tao
    Asher, Sanford A.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (10) : 5013 - 5025
  • [9] Highly Stretchable Photonic Crystal Hydrogels for a Sensitive Mechanochromic Sensor and Direct Ink Writing
    Chen, Jiayao
    Xu, Lirong
    Yang, Meijia
    Chen, Xiaochuan
    Chen, Xudong
    Hong, Wei
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (21) : 8918 - 8926
  • [10] Soft Acoustic Waveguides for Strain, Deformation, Localization, and Twist Measurements
    Chossat, Jean-Baptiste
    Shull, Peter B.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (01) : 222 - 230