Existence and stability of standing waves for nonlinear fractional Schrodinger equations with Hartree type nonlinearity

被引:47
作者
Wu, Dan [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Fractional nonlinear Schrodinger equation; Hartree; Standing wave; Stability; Concentration-compactness; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS;
D O I
10.1016/j.jmaa.2013.09.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the nonlinear fractional Schrodinger equations with Hartree type nonlinearity. We obtain the existence of standing waves by studying the related constrained minimization problems via applying the concentration-compactness principle. By symmetric decreasing rearrangements, we also show that the standing waves, up to translations and phases, are positive symmetric nonincreasing functions. Moreover, we prove that the set of minimizers is a stable set for the initial value problem of the equations, that is, a solution whose initial data is near the set will remain near it for all time. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:530 / 542
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1989, J. Amer. Math. Soc.
[2]  
[Anonymous], 2009, ARXIV09102721
[3]  
Cabre X, 2010, ARXIV10120867
[4]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[5]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
[6]  
Cho Y., 2012, ARXIV12082302
[7]   On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :193-224
[8]   Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :12-29
[9]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[10]   Reflected symmetric α-stable processes and regional fractional Laplacian [J].
Guan, QY ;
Ma, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (04) :649-694