Profiling spatial enrichment of chromatin marks suggests an additional epigenomic dimension in gene regulation

被引:8
作者
Chica, Claudia [1 ]
Szarzynska, Bogna [1 ]
Chen-Min-Tao, Romy [1 ]
Duvernois-Berthet, Evelyne [1 ]
Kassam, Mohamed [1 ]
Colot, Vincent [1 ]
Roudier, Francois [1 ]
机构
[1] Ecole Normale Super, CNRS, INSERM, Inst Biol,UMR8197,U1024, Paris, France
来源
FRONTIERS IN LIFE SCIENCE | 2013年 / 7卷 / 1-2期
关键词
epigenome; spatial chromatin profile; gene regulation; H3K4me3; H3K27me3; Arabidopsis; CHIP-SEQ DATA; POLYCOMB-GROUP; HUMAN GENOME; HISTONE H3; LYSINE; 27; ARABIDOPSIS; TRANSCRIPTION; STATES; TRIMETHYLATION; IDENTIFICATION;
D O I
10.1080/21553769.2013.844734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Post-translational modifications of histones are important components of chromatin-level control of genome activity in eukaryotes. In order to clarify the biological function of chromatin marks, classification methods have been developed that partition genomic regions based on their chromatin composition. Spatial enrichment of histone modifications over genes is one of the many epigenomic dimensions that reflect the impact of chromatin dynamics on gene regulation. Using a clustering approach, we have classified genes according to their H3K27me3 and H3K4me3 marking in Arabidopsis leaves and find that multiple spatial profiles with specific functional properties can be distinguished in both cases. In particular, we show that different profiles specify distinct levels of gene expression. In addition, we find that genes with different H3K27me3 profiles can be distinguished by the length of their first intron and that the length of the first exon is an important parameter that shapes the distinct H3K4me3 profiles. Finally, we suggest that profile height could be quantitatively used to estimate the relative abundance of cells in which a gene is marked, and potentially expressed, within a tissue.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 38 条
[1]   A Polycomb-based switch underlying quantitative epigenetic memory [J].
Angel, Andrew ;
Song, Jie ;
Dean, Caroline ;
Howard, Martin .
NATURE, 2011, 476 (7358) :105-+
[2]   Sequence and chromatin determinants of cell-type-specific transcription factor binding [J].
Arvey, Aaron ;
Agius, Phaedra ;
Noble, William Stafford ;
Leslie, Christina .
GENOME RESEARCH, 2012, 22 (09) :1723-1734
[3]   Making sense of chromatin states [J].
Baker, Monya .
NATURE METHODS, 2011, 8 (09) :717-722
[4]   The complex language of chromatin regulation during transcription [J].
Berger, Shelley L. .
NATURE, 2007, 447 (7143) :407-412
[5]   First Exon Length Controls Active Chromatin Signatures and Transcription [J].
Bieberstein, Nicole I. ;
Oesterreich, Fernando Carrillo ;
Straube, Korinna ;
Neugebauer, Karla M. .
CELL REPORTS, 2012, 2 (01) :62-68
[6]   Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition [J].
Bouyer, Daniel ;
Roudier, Francois ;
Heese, Maren ;
Andersen, Ellen D. ;
Gey, Delphine ;
Nowack, Moritz K. ;
Goodrich, Justin ;
Renou, Jean-Pierre ;
Grini, Paul E. ;
Colot, Vincent ;
Schnittger, Arp .
PLOS GENETICS, 2011, 7 (03)
[7]   Molecular control and function of endoreplication in development and physiology. [J].
De Veylder, Lieven ;
Larkin, John C. ;
Schnittger, Arp .
TRENDS IN PLANT SCIENCE, 2011, 16 (11) :624-634
[8]   Modeling gene expression using chromatin features in various cellular contexts [J].
Dong, Xianjun ;
Greven, Melissa C. ;
Kundaje, Anshul ;
Djebali, Sarah ;
Brown, James B. ;
Cheng, Chao ;
Gingeras, Thomas R. ;
Gerstein, Mark ;
Guigo, Roderic ;
Birney, Ewan ;
Weng, Zhiping .
GENOME BIOLOGY, 2012, 13 (09)
[9]   Cell cycling and cell enlargement in developing leaves of Arabidopsis [J].
Donnelly, PM ;
Bonetta, D ;
Tsukaya, H ;
Dengler, RE ;
Dengler, NG .
DEVELOPMENTAL BIOLOGY, 1999, 215 (02) :407-419
[10]   agriGO: a GO analysis toolkit for the agricultural community [J].
Du, Zhou ;
Zhou, Xin ;
Ling, Yi ;
Zhang, Zhenhai ;
Su, Zhen .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W64-W70