Temporal flows in temporal networks

被引:19
作者
Akrida, Eleni C. [1 ]
Czyzowicz, Jurek [2 ]
Gasieniec, Leszek [1 ]
Kuszner, Lukasz [3 ]
Spirakis, Paul G. [1 ,4 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Ashton Bldg,Ashton St, Liverpool L69 3BX, Merseyside, England
[2] Univ Quebec Outaouais, Dept Informat, Gatineau, PQ, Canada
[3] Univ Gdansk, Fac Math Phys & informat, Inst Informat, Ul Wita Stwosza 57, PL-80952 Gdansk, Poland
[4] Univ Patras, Sch Engn, Dept Comp Engn Ea Informat, GR-26500 Patras, Greece
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Temporal networks; Network flows; Random input; Edge availability; DYNAMIC NETWORKS; TIME;
D O I
10.1016/j.jcss.2019.02.003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce temporal flows on temporal networks. We show that one can find the maximum amount of flow that can pass from a source vertex s to a sink vertex t up to a given time in Polynomial time. We provide a static Time-Extended network (TEG) of polynomial size to the input, and show that temporal flows can be decomposed into flows, each moving through a single s-t temporal path. We then examine the case of unbounded node buffers. We prove that the maximum temporal flow is equal to the value of the minimum temporal s-t cut. We partially characterise networks with random edge availabilities that tend to eliminate the s-t temporal flow. We also consider mixed temporal networks, where some edges have specified availabilities and some edges have random availabilities; we define the truncated expectation of the maximum temporal flow and show that it is #P-hard to compute it. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 53 条
[41]   Fast Approximation Algorithms for Cut-based Problems in Undirected Graphs [J].
Madry, Aleksander .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :245-254
[42]  
Mertzios GB, 2013, LECT NOTES COMPUT SC, V7966, P657, DOI 10.1007/978-3-642-39212-2_57
[43]  
Michail O, 2014, LECT NOTES COMPUT SC, V8635, P553, DOI 10.1007/978-3-662-44465-8_47
[44]  
Nicosia V., 2013, Graph Metrics for Temporal Networks, P15, DOI DOI 10.1007/978-3-642-36461-72
[45]  
ODell R., 2005, JOINT WORKSH FDN MOB, P104
[46]  
Papadimitriou Christos H., 1994, Computational complexity
[47]  
Powell WB, 1995, HDBK OPER R, V8, P141
[48]   Faster algorithms for the generalized network flow problem [J].
Radzik, T .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (01) :69-100
[49]  
RADZIK T, 1992, PROCEEDINGS OF THE THIRD ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P185
[50]   Improving time bounds on maximum generalised flow computations by contracting the network [J].
Radzik, TM .
THEORETICAL COMPUTER SCIENCE, 2004, 312 (01) :75-97