The pion vector form factor from lattice QCD and NNLO chiral perturbation theory

被引:32
作者
Brandt, Bastian B. [1 ]
Juettner, Andreas [2 ]
Wittig, Hartmut [3 ,4 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] Johannes Gutenberg Univ Mainz, Inst Kernphys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, D-55099 Mainz, Germany
基金
欧洲研究理事会;
关键词
Lattice QCD; Nonperturbative Effects; Chiral Lagrangians; TWISTED BOUNDARY-CONDITIONS; HMC ALGORITHM; QUARK MASS; MESON; POLARIZABILITIES; IMPROVEMENT; SCALE;
D O I
10.1007/JHEP11(2013)034
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a comprehensive study of the electromagnetic form factor, the decay constant and the mass of the pion computed in lattice QCD with two degenerate O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05-0.08 fm and pion masses between 280 and 630 MeV at m(pi) L >= 4. Using partially twisted boundary conditions and stochastic estimators, we obtain a dense set of precise data points for the form factor at very small momentum transfers, allowing for a model-independent extraction of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model lattice artefacts is then compared to the data. At next-to-leading order the effective theory fails to produce a consistent description of the full set of pion observables but describes the data well when only the decay constant and mass are considered. By contrast, using the next-to-next-to-leading order expressions to perform global fits result in a consistent description of all data. We obtain < r(pi)(2)> = 0.481(33)(13) fm(2) as our final result for the charge radius at the physical point. Our calculation also yields estimates for the pion decay constant in the chiral limit, F-pi/F = 1.080(16)(6), the quark condensate, Sigma 1/3/MS (2 GeV) = 261(13)(1) MeV and several low-energy constants of SU(2) ChPT.
引用
收藏
页数:37
相关论文
共 72 条
[1]   A MEASUREMENT OF THE SPACE-LIKE PION ELECTROMAGNETIC FORM-FACTOR [J].
AMENDOLIA, SR ;
ARIK, M ;
BADELEK, B ;
BATIGNANI, G ;
BECK, GA ;
BEDESCHI, F ;
BELLAMY, EH ;
BERTOLUCCI, E ;
BETTONI, D ;
BILOKON, H ;
BOLOGNA, G ;
BOSISIO, L ;
BRADASCHIA, C ;
BUDINICH, M ;
CODINO, A ;
DELLORSO, M ;
PIAZZOLI, BD ;
ENORINI, M ;
FABBRI, FL ;
FIDECARO, F ;
FOA, L ;
FOCARDI, E ;
FRANK, SGF ;
GIAZOTTO, A ;
GIORGI, MA ;
GREEN, MG ;
HARVEY, J ;
HEATH, GP ;
LANDON, MPJ ;
LAURELLI, P ;
LIELLO, F ;
MANNOCCHI, G ;
MARCH, PV ;
MARROCCHESI, PS ;
MENZIONE, A ;
MERONI, E ;
MORONI, L ;
MILOTTI, E ;
PICCHI, P ;
RAGUSA, F ;
RISTORI, L ;
ROLANDI, L ;
SALA, S ;
SALTMARSH, CG ;
SAOUCHA, A ;
SATTA, L ;
SCRIBANO, A ;
SPILLANTINI, P ;
STEFANINI, A ;
STOREY, D .
NUCLEAR PHYSICS B, 1986, 277 (01) :168-196
[2]  
[Anonymous], JHEP
[3]  
[Anonymous], JHEP
[4]   Pion form factors from two-flavor lattice QCD with exact chiral symmetry [J].
Aoki, S. ;
Chiu, T. W. ;
Fukaya, H. ;
Hashimoto, S. ;
Hsieh, T. H. ;
Kaneko, T. ;
Matsufuru, H. ;
Noaki, J. ;
Onogi, T. ;
Shintani, E. ;
Yamada, N. .
PHYSICAL REVIEW D, 2009, 80 (03)
[5]   Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks [J].
Aubin, C. ;
Blum, T. .
PHYSICAL REVIEW D, 2007, 75 (11)
[6]   Aharonov-Bohm effect and nucleon-nucleon phase shifts on the lattice [J].
Bedaque, PE .
PHYSICS LETTERS B, 2004, 593 :82-88
[7]  
Bijnens J, 1998, NUCL PHYS B, V517, P639
[8]   Pion-pion scattering at low energy [J].
Bijnens, J ;
Colangelo, G ;
Ecker, G ;
Gasser, J ;
Sainio, ME .
NUCLEAR PHYSICS B, 1997, 508 (1-2) :263-310
[9]  
Bijnens J., 2002, JHEP, V03
[10]  
Bijnens J., 1998, JHEP, V05