Prevalence of strong vertical CO2 and O2 variability in the top meters of the ocean

被引:14
作者
Calleja, Maria Ll. [1 ,2 ]
Duarte, Carlos M. [1 ,3 ]
Alvarez, Marta [4 ]
Vaquer-Sunyer, Raquel [5 ]
Agusti, Susana [1 ,3 ]
Herndl, Gerhard J. [6 ,7 ]
机构
[1] CSIC UIB, Dept Global Change Res, Inst Mediterraneo Estudios Avanzados, Esporles, Spain
[2] CSIC UGR, Inst Andaluz Ciencias Tierra, Armilla, Spain
[3] Univ Western Australia, UWA Oceans Inst, Crawley, WA, Australia
[4] Ctr A Coruna, Inst Espanol Oceanog, Coruna, Spain
[5] Lund Univ, Dept Geol, Lund, Sweden
[6] Univ Vienna, Dept Marine Biol, Vienna, Austria
[7] Royal Netherlands Inst Sea Res, Dept Biol Oceanog, Den Burg, Netherlands
关键词
pCO2; variability; top meters; temperature; oxygen concentration; oceans; SEA-SURFACE MICROLAYER; NORTH-ATLANTIC-OCEAN; MEDITERRANEAN SEA; GAS-EXCHANGE; ORGANIC-MATTER; TEMPERATURE; SKIN; PCO(2); FLUX; BACTERIONEUSTON;
D O I
10.1002/gbc.20081
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The gradient in the partial pressure of carbon dioxide (pCO(2)) across the air-sea boundary layer is the main driving force for the air-sea CO2 flux. Global data bases for surface seawater pCO(2) are actually based on pCO(2) measurements from several meters below the sea surface, assuming a homogeneous distribution between the diffusive boundary layer and the upper top meters of the ocean. Compiling vertical profiles of pCO(2), temperature, and dissolved oxygen in the upper 5-8 m of the ocean from different biogeographical areas, we detected a mean difference between the boundary layer and 5 m pCO(2) of 131 mu atm. Temperature gradients accounted for only 11% of this pCO(2) gradient in the top meters of the ocean; thus, pointing to a heterogeneous biological activity underneath the air-sea boundary layer as the main factor controlling the top meters pCO(2) variability. Observations of pCO(2) just beneath the air-sea boundary layer should be further investigated in order to estimate possible biases in calculating global air-sea CO2 fluxes.
引用
收藏
页码:941 / 949
页数:9
相关论文
共 45 条
[1]   Resistance of marine bacterioneuston to solar radiation [J].
Agogué, H ;
Joux, F ;
Obernosterer, I ;
Lebaron, P .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (09) :5282-5289
[2]   THE CONCENTRATION AND ISOTOPIC FRACTIONATION OF OXYGEN DISSOLVED IN FRESH-WATER AND SEAWATER IN EQUILIBRIUM WITH THE ATMOSPHERE [J].
BENSON, BB ;
KRAUSE, D .
LIMNOLOGY AND OCEANOGRAPHY, 1984, 29 (03) :620-632
[3]   Evidence for surface organic matter modulation of air-sea CO2 gas exchange [J].
Calleja, M. Li. ;
Duarte, C. M. ;
Prairie, Y. T. ;
Agusti, S. ;
Herndl, G. J. .
BIOGEOSCIENCES, 2009, 6 (06) :1105-1114
[4]   Control of air-sea CO2 disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin -: art. no. L08606 [J].
Calleja, ML ;
Duarte, CM ;
Navarro, N ;
Agustí, S .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (08) :1-4
[5]  
Corbière A, 2007, TELLUS B, V59, P168, DOI 10.1111/j.l600-0889.2006.00232.x
[6]   Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface [J].
Cunliffe, Michael ;
Engel, Anja ;
Frka, Sanja ;
Gasparovic, Blazenka ;
Guitart, Carlos ;
Murrell, J. Colin ;
Salter, Matthew ;
Stolle, Christian ;
Upstill-Goddard, Robert ;
Wurl, Oliver .
PROGRESS IN OCEANOGRAPHY, 2013, 109 :104-116
[7]   TIME AND SPACE SCALES OF VERTICAL MIXING AND ADVECTION OF PHYTOPLANKTON IN THE UPPER OCEAN [J].
DENMAN, KL ;
GARGETT, AE .
LIMNOLOGY AND OCEANOGRAPHY, 1983, 28 (05) :801-815
[8]  
Donlon CJ, 2002, J CLIMATE, V15, P353, DOI 10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO
[9]  
2
[10]  
Ducklow H.W., 2004, SEA, V13, P269