Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions

被引:20
作者
Ammari, Habib [1 ]
Kang, Hyeonbae [2 ]
Kim, Kyoungsun [2 ]
Lee, Hyundae [2 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75005 Paris, France
[2] Inha Univ, Dept Math, Inchon 402751, South Korea
关键词
Strong convergence; Lame parameters; High contrast; Asymptotic expansion; Uniformity; BOUNDARY MEASUREMENTS; SMALL-DIAMETER; CONDUCTIVITY PROBLEM; MOMENT TENSORS; RECONSTRUCTION; INHOMOGENEITIES; IDENTIFICATION; ELASTOSTATICS; DEPENDENCE; SYSTEMS;
D O I
10.1016/j.jde.2013.03.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Lame system of linear elasticity when the inclusion has the extreme elastic constants. We show that the solutions to the Lame system converge in appropriate H-1-norms when the shear modulus tends to infinity (the other modulus, the compressional modulus is fixed), and when the bulk modulus and the shear Modulus tend to zero. Using this result, we show that the asymptotic expansion of the displacement Vector in the presence of small inclusion is uniform with respect to Lame parameters. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4446 / 4464
页数:19
相关论文
共 30 条
[1]   Gradient estimates for solutions to the conductivity problem [J].
Ammari, H ;
Kang, HB ;
Lim, M .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :277-286
[2]   Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion [J].
Ammari, H ;
Kang, H ;
Nakamura, G ;
Tanuma, K .
JOURNAL OF ELASTICITY, 2002, 67 (02) :97-129
[3]   High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter [J].
Ammari, H ;
Kang, HB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (05) :1152-1166
[4]   Electrical impedance tomography by elastic deformation [J].
Ammari, H. ;
Bonnetier, E. ;
Capdeboscq, Y. ;
Tanter, M. ;
Fink, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) :1557-1573
[5]  
Ammari H., 2007, Applied Mathematical Sciences
[6]  
Ammari H., ARXIV12106760
[7]  
Ammari H., 2009, Layer Potential Techniques in Spectral Analysis, V153
[8]  
Ammari H, 2008, Q APPL MATH, V66, P139
[9]   Reconstruction of elastic inclusions of small volume via dynamic measurements [J].
Ammari, Habib ;
Kang, Hyeonbae .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 54 (02) :223-235
[10]   Spectral Analysis of the Neumann-Poincar, Operator and Characterization of the Stress Concentration in Anti-Plane Elasticity [J].
Ammari, Habib ;
Ciraolo, Giulio ;
Kang, Hyeonbae ;
Lee, Hyundae ;
Yun, KiHyun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (01) :275-304