Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure

被引:3
作者
McAteer, R. T. James [1 ]
机构
[1] New Mexico State Univ, Solar Phys & Space Weather, Las Cruces, NM 88003 USA
基金
美国国家科学基金会;
关键词
Flares; Dynamics; Helicity; Magnetic; Magnetic fields; Corona; MULTIFRACTAL ANALYSIS; BURSTY NATURE; SOLAR-FLARES; FIELD; STATISTICS; COMPLEXITY;
D O I
10.1007/s11207-015-0733-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare AmpSre's law to the wavelet-transform modulus maximum method. The Holder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially powerful tool for a statistical prediction of solar-flare activity. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with high current densities at large size scales will be the source of energy storage for solar eruptive events.
引用
收藏
页码:1897 / 1907
页数:11
相关论文
共 26 条
[1]   INTERMITTENCY AND MULTIFRACTALITY SPECTRA OF THE MAGNETIC FIELD IN SOLAR ACTIVE REGIONS [J].
Abramenko, Valentyna ;
Yurchyshyn, Vasyl .
ASTROPHYSICAL JOURNAL, 2010, 722 (01) :122-130
[2]   Multifractal analysis of solar magnetograms [J].
Abramenko, VI .
SOLAR PHYSICS, 2005, 228 (1-2) :29-42
[3]   EVALUATING THE PERFORMANCE OF SOLAR FLARE FORECASTING METHODS [J].
Barnes, G. ;
Leka, K. D. .
ASTROPHYSICAL JOURNAL LETTERS, 2008, 688 (02) :L107-L110
[4]   TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS [J].
Bloomfield, D. Shaun ;
Higgins, Paul A. ;
McAteer, R. T. James ;
Gallagher, Peter T. .
ASTROPHYSICAL JOURNAL LETTERS, 2012, 747 (02)
[5]   Functional Currents: A New Mathematical Tool to Model and Analyse Functional Shapes [J].
Charon, Nicolas ;
Trouve, Alain .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 48 (03) :413-431
[6]   Multifractal properties of evolving active regions [J].
Conlon, P. A. ;
Gallagher, P. T. ;
McAteer, R. T. J. ;
Ireland, J. ;
Young, C. A. ;
Kestener, P. ;
Hewett, R. J. ;
Maguire, K. .
SOLAR PHYSICS, 2008, 248 (02) :297-309
[7]   QUANTIFYING THE EVOLVING MAGNETIC STRUCTURE OF ACTIVE REGIONS [J].
Conlon, Paul A. ;
McAteer, R. T. James ;
Gallagher, Peter T. ;
Fennell, Linda .
ASTROPHYSICAL JOURNAL, 2010, 722 (01) :577-585
[8]   A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 [J].
DeRosa, Marc L. ;
Schrijver, Carolus J. ;
Barnes, Graham ;
Leka, K. D. ;
Lites, Bruce W. ;
Aschwanden, Markus J. ;
Amari, Tahar ;
Canou, Aurelien ;
McTiernan, James M. ;
Regnier, Stephane ;
Thalmann, Julia K. ;
Valori, Gherardo ;
Wheatland, Michael S. ;
Wiegelmann, Thomas ;
Cheung, Mark C. M. ;
Conlon, Paul A. ;
Fuhrmann, Marcel ;
Inhester, Bernd ;
Tadesse, Tilaye .
ASTROPHYSICAL JOURNAL, 2009, 696 (02) :1780-1791
[9]   Toward an Efficient Prediction of Solar Flares: Which Parameters, and How? [J].
Georgoulis, Manolis K. .
ENTROPY, 2013, 15 (11) :5022-5052
[10]   Statistics, morphology, and energetics of Ellerman bombs [J].
Georgoulis, MK ;
Rust, DM ;
Bernasconi, PN ;
Schmieder, B .
ASTROPHYSICAL JOURNAL, 2002, 575 (01) :506-528