GLOBAL EXISTENCE OF MARTINGALE SOLUTIONS TO THE THREE-DIMENSIONAL STOCHASTIC COMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:0
作者
Wang, Dehua [1 ]
Wang, Huaqiao [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
WEAK SOLUTIONS; ERGODICITY; UNIQUENESS; DRIVEN; 2D; LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stochastic three-dimensional compressible Navier-Stokes equations are considered in a bounded domain with multiplicative noise. The global existence of martingale solution is established through the Galerkin approximation method, stopping time, compactness method and the Jakubowski-Skorokhod theorem. A martingale solution is a weak solution for the fluid variables and the Brownian motion on a probability space. The initial data is arbitrarily large and satisfies a natural compatibility condition.
引用
收藏
页码:1105 / 1154
页数:50
相关论文
共 55 条
[1]  
[Anonymous], 2013, Graduate Studies in Mathematics, DOI DOI 10.1090/MBK/082
[2]  
[Anonymous], ARXIV13020542
[3]  
[Anonymous], 1996, LONDON MATH SOC LECT
[4]  
Antontsev S.N., 1990, Boundary value problems in mechanics of nonhomogeneous fluids
[5]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[6]  
Bensoussan A., 1973, J FUNCT ANAL, V13, P195
[7]   Martingale solutions for stochastic Euler equations [J].
Bessaih, H .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1999, 17 (05) :713-725
[8]  
Bessaih H., 2003, ELECT J DIFFERENTIAL, V2003, P1
[9]  
Bogovskii M.E., 1980, THEORY CUBATURE FORM, V1, P5
[10]  
Breckner H., 2000, J. Appl. Math. Stoch. Anal, V133, P239