Preparation of metallic single-wall carbon nanotubes

被引:27
作者
Li, Xiao-Qi [1 ,2 ]
Hou, Peng-Xiang [1 ,2 ]
Liu, Chang [1 ,2 ]
Cheng, Hui-Ming [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
[3] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Low Dimens Mat & Device Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
CAP PRECURSOR MOLECULES; ELECTRONIC-STRUCTURE; CHIRALITY SEPARATION; CONTROLLED GROWTH; 6,6 ARMCHAIR; THIN-FILMS; 9,0 ZIGZAG; ENRICHMENT; ARRAYS; FABRICATION;
D O I
10.1016/j.carbon.2019.02.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic single-wall carbon nanotubes (m-SWCNTs) have a high electrical conductivity due to ballistic electron transport, and have a bright future for use in nanocircuitry, conductive fibers, and transparent conductive films. To realize these applications, it is essential to obtain pure, high-quality m-SWCNTs on a large scale. In recent years, many techniques such as density-gradient centrifugation, gel chromatography, selective etching, direct growth by catalyst design and external electric field assistance have been developed to prepare m-SWCNTs. Here we present a state-of-the-art overview of the preparation of m-SWCNTs focusing on the principles, methods, and their advantages and limitations. The key challenges remaining for obtaining high quality m-SWCNTs with a high yield are discussed, and the developing trend for the selective preparation of m-SWCNTs is examined. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 97 条
[1]   Bottom up fabrication of (9,0) zigzag and (6,6) armchair carbon nanotube end-caps on the Rh(111) surface [J].
Abdurakhmanova, Nasiba ;
Mueller, A. ;
Stepanow, S. ;
Rauschenbach, S. ;
Jansen, M. ;
Kern, K. ;
Amsharov, K. Yu .
CARBON, 2015, 84 :444-447
[2]   Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers [J].
Antaris, Alexander L. ;
Seo, Jung-Woo T. ;
Green, Alexander A. ;
Hersam, Mark C. .
ACS NANO, 2010, 4 (08) :4725-4732
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Why nanotubes grow chiral [J].
Artyukhov, Vasilii I. ;
Penev, Evgeni S. ;
Yakobson, Boris I. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Growth of aligned carbon nanotubes by biasing during growth [J].
Avigal, Y ;
Kalish, R .
APPLIED PHYSICS LETTERS, 2001, 78 (16) :2291-2293
[6]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   STATIC POLARIZABILITIES OF SINGLE-WALL CARBON NANOTUBES [J].
BENEDICT, LX ;
LOUIE, SG ;
COHEN, ML .
PHYSICAL REVIEW B, 1995, 52 (11) :8541-8549
[9]   New method for the growth of single-walled carbon nanotubes from bimetallic nanoalloy catalysts based on Prussian blue analog precursors [J].
Castan, A. ;
Forel, S. ;
Catala, L. ;
Florea, I. ;
Fossard, F. ;
Bouanis, F. ;
Andrieux-Ledier, A. ;
Mazerat, S. ;
Mallah, T. ;
Huc, V. ;
Loiseau, A. ;
Cojocaru, C. S. .
CARBON, 2017, 123 :583-592
[10]   A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes [J].
Chattopadhyay, D ;
Galeska, L ;
Papadimitrakopoulos, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (11) :3370-3375