Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage

被引:258
作者
Song, Min-Kyu [1 ]
Cheng, Shuang [1 ]
Chen, Haiyan [2 ]
Qin, Wentao [1 ]
Nam, Kyung-Wan [3 ]
Xu, Shucheng [4 ]
Yang, Xiao-Qing [3 ]
Bongiorno, Angelo [4 ]
Lee, Jangsoo [5 ]
Bai, Jianming [6 ]
Tyson, Trevor A. [2 ]
Cho, Jaephil [5 ]
Liu, Meilin [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA
[2] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
[3] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[4] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[5] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
[6] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA
基金
美国能源部; 美国国家科学基金会;
关键词
Energy storage; electrochemical capacitors; mixed-valent compounds; enhanced pseudocapacitance; in situ X-ray absorption spectroscopy; CHARGE COMPENSATION; ELECTRODE MATERIAL; HIGH-POWER; MNO2; PERFORMANCE; COMPOSITES; MECHANISM; CAPACITY;
D O I
10.1021/nl300984y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, rnixed-valent manganese oxide film that exhibits anomalously high specific capacitance (similar to 2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials similar to 0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices.
引用
收藏
页码:3483 / 3490
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[3]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[4]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[5]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[6]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[7]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[8]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[9]   Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers [J].
Gao, Tao ;
Glerup, Marianne ;
Krumeich, Frank ;
Nesper, Reinhard ;
Fjellvag, Helmer ;
Norby, Poul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (34) :13134-13140
[10]   Energy storage in electrochemical capacitors: designing functional materials to improve performance [J].
Hall, Peter J. ;
Mirzaeian, Mojtaba ;
Fletcher, S. Isobel ;
Sillars, Fiona B. ;
Rennie, Anthony J. R. ;
Shitta-Bey, Gbolahan O. ;
Wilson, Grant ;
Cruden, Andrew ;
Carter, Rebecca .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1238-1251