Unsupervised Discovery of Activities and their Temporal Behaviour

被引:2
作者
Faruquie, Tanveer A. [1 ]
Banerjee, Subhashis [1 ]
Kalra, Prem K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Comp Sci & Engn, Delhi, India
来源
2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS) | 2012年
关键词
D O I
10.1109/AVSS.2012.79
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of discovering activities and their temporal significance in surveillance videos in an unsupervised manner. We propose a generative model that can jointly capture the activities and their behaviour over time. We use multinomial distribution over local motion features to model activities and a mixture distribution over their time stamps to capture the multi-modal temporal distribution of these activities. We give a Gibbs sampling algorithm to infer the parameters of the model. We demonstrate the effectiveness of our approach on real life surveillance feed of outdoor scenes.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 2009, ICCV
[2]  
Emonet R, 2011, PROC CVPR IEEE
[3]  
Faruquie T. A, 2009, BRIT MACH VIS C
[4]  
Guo P., 2010, IEEE ICME
[5]  
Kettnaker V., 2003, IEEE CVPR WORKSH
[6]  
Kuettel D., 2010, IEEE CVPR
[7]  
Niebles J.C., 2008, IJCV
[8]  
Niu F., 2005, IEEE ICME
[9]  
Varadarajan J., 2010, BMVC
[10]  
Wang X., 2006, KDD