Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex

被引:425
作者
Paull, TT [1 ]
Gellert, M [1 ]
机构
[1] NIDDKD, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
Nijmegen breakage syndrome; Mre11/Rad50; protein; ATP binding; DNA unwinding;
D O I
10.1101/gad.13.10.1276
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Nijmegen breakage syndrome gene product (Nbs1) was shown recently to associate in vivo with the Mre11 and Rad50 proteins, which play pivotal roles in eukaryotic DNA double-strand break repair, meiotic recombination, and telomere maintenance. We show in this work that the triple complex of recombinant Nbs1, Mre11, and Rad50 proteins binds cooperatively to DNA and forms a distinct protein-DNA species. The Mre11/Rad50/Nbs1 complex displays several enzymatic activities that are not seen without Nbs1, including partial unwinding of a DNA duplex and efficient cleavage of fully paired hairpins. Unwinding and hairpin cleavage are both increased by the presence of ATP. On nonhairpin DNA ends, ATP controls a switch in endonuclease specificity that allows Mre11/Rad50/Nbs1 to cleave a 3'-protruding strand at a double-/single-strand transition. Mutational analysis demonstrates that Rad50 is responsible for ATP binding by the complex, but the ATP-dependent activities are expressed only with Nbs1 present.
引用
收藏
页码:1276 / 1288
页数:13
相关论文
共 65 条
[1]  
ALANI E, 1989, GENETICS, V122, P47
[2]   ANALYSIS OF WILD-TYPE AND RAD50 MUTANTS OF YEAST SUGGESTS AN INTIMATE-RELATIONSHIP BETWEEN MEIOTIC CHROMOSOME SYNAPSIS AND RECOMBINATION [J].
ALANI, E ;
PADMORE, R ;
KLECKNER, N .
CELL, 1990, 61 (03) :419-436
[3]   Hairpin coding end opening is mediated by RAG1 and RAG2 proteins [J].
Besmer, E ;
Mansilla-Soto, J ;
Cassard, S ;
Sawchuk, DJ ;
Brown, G ;
Sadofsky, M ;
Lewis, SM ;
Nussenzweig, MC ;
Cortes, P .
MOLECULAR CELL, 1998, 2 (06) :817-828
[4]  
Bianco P R, 1998, Front Biosci, V3, pD570
[5]   A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins [J].
Bork, P ;
Hofmann, K ;
Bucher, P ;
Neuwald, AF ;
Altschul, SF ;
Koonin, EV .
FASEB JOURNAL, 1997, 11 (01) :68-76
[6]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[7]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[8]   Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1998, 17 (06) :1819-1828
[9]  
Bressan DA, 1998, GENETICS, V150, P591
[10]   The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response [J].
Carney, JP ;
Maser, RS ;
Olivares, H ;
Davis, EM ;
Le Beau, M ;
Yates, JR ;
Hays, L ;
Morgan, WF ;
Petrini, JHJ .
CELL, 1998, 93 (03) :477-486