Characterization of interfacial states at silicon bicrystals

被引:0
作者
Kamaev, GN
Golod, S
Skok, EM
Fedotov, A
Mazanik, A
机构
[1] Russian Acad Sci, Inst Semicond Phys, RU-630090 Novosibirsk, Russia
[2] Belarusian State Univ, RU-220050 Minsk, BELARUS
来源
GETTERING AND DEFECT ENGINEERING IN SEMICONDUCTOR TECHNOLOGY | 2002年 / 82-84卷
关键词
defects; direct bonding; grain boundary; interface; microwave transient photoconductivity; polycrystal; silicon; silicon-on-insulator;
D O I
10.4028/www.scientific.net/SSP.82-84.801
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Properties of "silicon-silicon" interfaces in silicon bicrystals produced both by edge-defined film-fed growth and direct bonding methods are investigated using computer-controlled transient photoconductivity, I-V and C-V measurements. The parameters of boundary trap centers (the activation energies, cross sections and energy distribution of states in the forbidden gap) at the interface profiles of boron atoms in the vicinity of boundaries in polycrystalline silicon and directly-bonded silicon wafers are found.
引用
收藏
页码:801 / 806
页数:6
相关论文
共 50 条
[31]   INTERFACIAL MICROSTRUCTURE OF SILICON CARBIDE FIBER REINFORCED COMPOSITES [J].
王依民 ;
杨序纲 ;
汪涌 .
Journal of China Textile University(English Edition), 1997, (04) :13-17
[32]   Interfacial interaction between cerium oxide and silicon surfaces [J].
Pagliuca, F. ;
Luches, P. ;
Valeri, S. .
SURFACE SCIENCE, 2013, 607 :164-169
[33]   Determination of the interfacial dynamic velocity in silicon solar cells [J].
Azar, B ;
de la Bardonnie, M ;
Farah, J ;
Khoury, A ;
Pelanchon, F ;
Mialhe, P .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 63 (02) :101-115
[34]   Interfacial strengths of organosilicate glasses deposited on silicon wafers [J].
Liu, T. C. ;
Lee, Sanboh ;
Chen, B. T. ;
Jang, S. M. .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 108 (01) :115-119
[35]   Interfacial layer characterization in dental composite [J].
Truffier-Boutry, D ;
Place, E ;
Devaux, J ;
Leloup, G .
JOURNAL OF ORAL REHABILITATION, 2003, 30 (01) :74-77
[36]   Interfacial Nanocomposite Characterization by Nanoparticle Debonding [J].
Killgore, J. ;
Overney, R. .
NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, :908-+
[37]   Theoretical study of the band offset at silicon-oxide/silicon interfaces with interfacial defects [J].
Kageshima, H ;
Shiraishi, K .
SURFACE SCIENCE, 1998, 407 (1-3) :133-139
[38]   Oxidation simulation of (111) and (100) silicon substrates based on the interfacial silicon emission model [J].
Uematsu, M ;
Kageshima, H ;
Shiraishi, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (11B) :L1135-L1137
[39]   Simulation of high-pressure oxidation of silicon based on the interfacial silicon emission model [J].
Uematsu, M ;
Kageshima, H ;
Shiraishi, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (10A) :L952-L954
[40]   Interfacial thermal resistance between nanoconfined water and silicon: Impact of temperature and silicon phase [J].
Goncalves, William ;
Isaiev, Mykola ;
Lacroix, David ;
Gomes, Severine ;
Termentzidis, Konstantinos .
SURFACES AND INTERFACES, 2022, 33