A review of recent advances in microneedle technology for transdermal drug delivery

被引:139
|
作者
Nagarkar, Rigved [1 ]
Singh, Mahima [1 ]
Nguyen, Hiep X. [2 ]
Jonnalagadda, Sriramakamal [1 ]
机构
[1] Univ Sci, Philadelphia Coll Pharm, Dept Pharmaceut Sci, 600 S 43rd St, Philadelphia, PA 19104 USA
[2] Aurobindo Pharma USA Inc, 2929 Weck Dr, Durham, NC 27709 USA
关键词
Microelectromechanical systems; Biocompatibility; Transdermal; Microneedles; Micromolding; Non-degradable; ANTIMICROBIAL PROPERTIES; DISSOLVING MICRONEEDLES; 2-PHOTON POLYMERIZATION; SUPRACHOROIDAL SPACE; COATED MICRONEEDLES; METAL MICRONEEDLES; HUMAN SKIN; FABRICATION; VACCINE; ARRAYS;
D O I
10.1016/j.jddst.2020.101923
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Transdermal devices are used to deliver drugs through the skin. However, limitations such as molecular weight and hydrophilicity of the molecules prevent its wider use. Microneedle technology offers an enhanced drug delivery option. Depending on the delivery, different types of microneedles such as solid, hollow, dissolving and coated are discussed. While solid microneedles create micropores in the skin, hollow microneedles provide a channel into the dermis. Dissolving microneedles have been explored for vaccine delivery while coated microneedles use a drug dispersion to effectively load drugs. This review also focuses on the techniques involved in fabrication of microneedles. Several methods using various solvent techniques, electromechanical systems, laser ablation and additive manufacturing are discussed. The nature of material used impacts the method used for fabrication. Various degradable and non-degradable materials used for fabrication are discussed. Microneedles can be made from metals, silicone, ceramics, synthetic as well as biodegradable polymers like carbohydrates. Each material has its own advantages and disadvantages. Stainless steel demonstrates good biocompatibility but are highly corrosive while silicones are easy to fabricate but brittle. Microneedle technology possesses a tremendous potential considering the variations in types and materials it offers with ease of fabrication and are the next generation therapeutics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Buckling analysis of polymer microneedle for transdermal drug delivery
    Radhika, C.
    Gnanavel, B. K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 3538 - 3541
  • [42] Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery
    Demir, Yusuf K.
    Akan, Zafer
    Kerimoglu, Oya
    PLOS ONE, 2013, 8 (10):
  • [43] Microneedle for transdermal drug delivery: current trends and fabrication
    Jae Hwan Jung
    Sung Giu Jin
    Journal of Pharmaceutical Investigation, 2021, 51 : 503 - 517
  • [44] Electrically assisted microneedle mediated transdermal drug delivery
    Garland, Martin J.
    McMillan, Hannah
    Woolfson, A. David
    Donnelly, Ryan F.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2010, 62 (10) : 1265 - 1266
  • [45] Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery
    Ji, Jing
    Tay, Francis E. H.
    Miao, Jianmin
    Iliescu, Ciprian
    INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 : 1127 - 1131
  • [46] Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery
    Amjadi, Morteza
    Mostaghaci, Babak
    Sitti, Metin
    CURRENT GENE THERAPY, 2017, 17 (02) : 139 - 146
  • [47] Recent advances of optimizing transdermal drug delivery through diffusion modeling
    Moh, Jong Hyun
    Kim, Myoung Jin
    Kim, Yoon Tae
    Khang, Gilson
    Lee, Tae-Wan
    Lee, Han-Koo
    Lee, Hai Bang
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 5 (01) : 57 - 60
  • [48] Dissolving microneedle rollers for rapid transdermal drug delivery
    Zhang, Xiao Peng
    Zhang, Bao Li
    Chen, Bo Zhi
    Zhao, Ze Qiang
    Fei, Wen Min
    Cui, Yong
    Guo, Xin Dong
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2022, 12 (02) : 459 - 471
  • [49] Mathematical modeling of transdermal drug delivery using microneedle
    Benslimane, Abdelhakim
    Fatmi, Sofiane
    Taouzinet, Lamia
    Hammiche, Dalila
    MATERIALS TODAY-PROCEEDINGS, 2022, 53 : 213 - 217
  • [50] Microneedle array provides conduits for transdermal drug delivery
    不详
    MRS BULLETIN, 1998, 23 (09) : 9 - 9