Machine Learning and Data Mining Methods in Diabetes Research

被引:606
|
作者
Kavakiotis, Ioannis [1 ,2 ]
Tsave, Olga [3 ]
Salifoglou, Athanasios [3 ]
Maglaveras, Nicos [2 ,4 ]
Vlahavas, Ioannis [1 ]
Chouvarda, Ioanna [2 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
[2] CERTH, Inst Appl Biosci, Thessaloniki, Greece
[3] Aristotle Univ Thessaloniki, Inorgan Chem Lab, Dept Chem Engn, Thessaloniki 54124, Greece
[4] Aristotle Univ Thessaloniki, Lab Comp & Med Informat, Sch Med, Thessaloniki 54124, Greece
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2017年 / 15卷
关键词
Machine learning; Data mining; Diabetes mellitus; Diabetic complications; Disease prediction models; Biomarker(s) identification; PREDICTIVE MODELS; RISK-ASSESSMENT; RETINOPATHY; MELLITUS; DISEASE; DIAGNOSIS; CLASSIFICATION; OPTIMIZATION; ASSOCIATION; EXTRACTION;
D O I
10.1016/j.csbj.2016.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [21] Data mining and machine learning methods for sustainable smart cities traffic classification: A survey
    Shafiq, Survey Muhammad
    Tian, Zhihong
    Bashir, Ali Kashif
    Jolfaei, Alireza
    Yu, Xiangzhan
    SUSTAINABLE CITIES AND SOCIETY, 2020, 60
  • [22] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [23] Overview of Data Mining Based on Machine Learning
    Zhou, Jia-Sheng
    Cai, Zhi-Yuan
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMMUNICATION ENGINEERING (CSCE 2015), 2015, : 51 - 56
  • [24] Business data mining - a machine learning perspective
    Bose, I
    Mahapatra, RK
    INFORMATION & MANAGEMENT, 2001, 39 (03) : 211 - 225
  • [25] The Application of Machine Learning Algorithms in Data Mining
    Zhang, Wei
    2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016), 2016, : 521 - 527
  • [26] Fuzzy sets in machine learning and data mining
    Huellermeier, Eyke
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1493 - 1505
  • [27] Value of fuzzy logic for data mining and machine learning: A case study
    Mirzakhanov, Vugar E.
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 162
  • [28] Data Mining and Machine Learning Methods Applied to A Numerical Clinching Model
    Goetz, Marco
    Leichsenring, Ferenc
    Kropp, Thomas
    Muller, Peter
    Falk, Tobias
    Graf, Wolfgang
    Kaliske, Michael
    Drossel, Welf-Guntram
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2018, 117 (03): : 387 - 423
  • [29] Potential value and impact of data mining and machine learning in clinical diagnostics
    Saberi-Karimian, Maryam
    Khorasanchi, Zahra
    Ghazizadeh, Hamideh
    Tayefi, Maryam
    Saffar, Sara
    Ferns, Gordon A.
    Ghayour-Mobarhan, Majid
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2021, 58 (04) : 275 - 296
  • [30] Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA
    Yang, Aimin
    Zhang, Wei
    Wang, Jiahao
    Yang, Ke
    Han, Yang
    Zhang, Limin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8