Tamagawa defect of Euler systems

被引:3
作者
Bueyuekboduk, Kazim [1 ]
机构
[1] IHES, F-91440 Bures Sur Yvette, France
关键词
Euler systems; Kolyvagin systems; Tamagawa Numbers; The Birch and Swinnerton-Dyer conjecture; MODULAR-REPRESENTATIONS;
D O I
10.1016/j.jnt.2008.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As remarked by Mazur and Rubin [B. Mazur, K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (799) (2004)] one does not expect the Kolyvagin system obtained from an Euler system for a p-adic Galois representation T to be primitive (in the sense of the above mentioned reference) if p divides a Tamagawa number at a prime l not equal p: thus fails to compute the correct size of the relevant Selmer module. In this paper we obtain a lower bound for the size of the cokernel of the Enter system to Kolyvagin system map in terms of the local Tamagawa numbers of T, refining a result of [B. Mazur, K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (799) (2004)]. We show how this partially accounts for the missing Tamagawa factors in Kato's calculations with his Enter system. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:402 / 417
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2000, COURBES SEMISTABLES
[2]  
BLOCH S., 1990, Progress in Mathematics, V86, P333
[3]  
BUYUKBODUK K, ARXIV07060377V1MATHN
[4]   Iwasawa theory for Rham representations of a local body [J].
Colmez, P .
ANNALS OF MATHEMATICS, 1998, 148 (02) :485-571
[5]  
DUMMIGAN N, LEVEL LOWERING HIGHE
[6]  
Fontaine J.-M., 1994, P S PURE MATH, P599
[7]   Global divisibility of Heegner points and Tamagawa numbers [J].
Jetchev, Dimitar .
COMPOSITIO MATHEMATICA, 2008, 144 (04) :811-826
[8]  
Kato K, 2004, ASTERISQUE, P117
[9]  
Kato K., 2004, Asterisque, V295, P117
[10]  
KATO K, 1999, KODAI MATH J, V22, P313, DOI DOI 10.2996/KMJ/1138044090.MR1727298