Research on Identification Process of Nonlinear System Based on An Improved Recursive Least Squares Algorithm

被引:0
作者
Tan, Zilong [1 ]
Zhang, Huaguang [2 ]
Sun, Jiayue [2 ]
Du, Kai [3 ]
机构
[1] Liaoning Sci & Technol Museum, Shenyang 110004, Peoples R China
[2] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
[3] Northwest Engn Corp Ltd, Xian 710065, Peoples R China
来源
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019) | 2019年
关键词
Recursive least-squares method; Identification; Incremental Estimation; Convergence; MODEL;
D O I
10.1109/ccdc.2019.8832530
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The global dynamics for nonlinear system commonly exist in practical application is built through multiple local linear models, however, least squares method is only suitable for the latter, solving the problem by a robust recursive least-squares method to identify the system. Common parameter identification algorithm is only appropriate for slow time-varying systems, but the proposed improved algorithm is effective for condition that the parameters change rapidly and difficult to track in real time. It shows that the improved least squares algorithm can extend parameter estimation range. Recursive least square method can obtain parameter estimations of noise model and process model simultaneously, however, traditional least square method can only realize parameter estimations of process model. The convergence performance of the raised algorithm will be demonstrated. Simulations are given to illustrate the availability and correctness of the proposed method.
引用
收藏
页码:1673 / 1678
页数:6
相关论文
共 16 条
[1]   Time-varying magnetic field analysis using an improved meshless method based on interpolating moving least squares [J].
Arehpanahi, Mehdi ;
Jamalifard, Hamid Reza .
IET SCIENCE MEASUREMENT & TECHNOLOGY, 2018, 12 (06) :816-820
[2]   ROBUST RECURSIVE INSTRUMENTAL VARIABLE METHOD WITH MODIFIED WEIGHTS FOR BILINEAR SYSTEM-IDENTIFICATION [J].
DAI, HP ;
SINHA, NK .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1991, 38 (01) :1-7
[3]   Identification of nonlinear parameter varying systems with missing output data [J].
Deng, Jing ;
Huang, Biao .
AICHE JOURNAL, 2012, 58 (11) :3454-3467
[4]   Recursive Frequency Domain Decomposition for Multidimensional Ambient Modal Estimation [J].
Khalilinia, Hamed ;
Venkatasubramanian, Vaithianathan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) :822-823
[5]   Improving the bound on the restricted isometry property constant in multiple orthogonal least squares [J].
Li, Haifeng ;
Zhang, Jing ;
Zou, Jian .
IET SIGNAL PROCESSING, 2018, 12 (05) :666-671
[6]  
Li YS, 2016, 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), P5001, DOI 10.1109/PIERS.2016.7735817
[7]   Prognostics and Health Management of Bearings Based on Logarithmic Linear Recursive Least-Squares and Recursive Maximum Likelihood Estimation [J].
Liu, Xiongjun ;
Song, Ping ;
Yang, Cheng ;
Hao, Chuangbo ;
Peng, Wenjia .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) :1549-1558
[8]   A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution [J].
Motapon, Souleman Njoya ;
Lupien-Bedard, Alexandre ;
Dessaint, Louis-A. ;
Fortin-Blanchette, Handy ;
Al-Haddad, Kamal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (02) :998-1008
[9]   Linear Parameter Varying Control of Doubly Fed Induction Machines [J].
Nguyen Tien, H. ;
Scherer, Carsten W. ;
Scherpen, Jacquelien M. A. ;
Mueller, Volkmar .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (01) :216-224
[10]   Recursive-Least-Squares-Based Real-Time Estimation of Supercapacitor Parameters [J].
Reichbach, Noam ;
Kuperman, Alon .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2016, 31 (02) :810-812