A general lumped model for transient heat conduction in one-dimensional geometries (vol 25, pg 567, 2005)

被引:0
|
作者
Sadat, Hamou [1 ]
机构
[1] Ecole Super Ingn Poitiers, Lab Etud Therm, UMR 6608, 40 Ave Recteur Pineau, Poitiers, France
关键词
D O I
10.1016/j.applthermaleng.2020.115600
中图分类号
O414.1 [热力学];
学科分类号
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [31] One dimensional transient heat conduction in segmented fin-like geometries with distinct discrete peripheral convection
    Becker, S. M.
    Herwig, H.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 71 : 148 - 162
  • [32] The synthesis of one-dimensional controllable ZnO microrods (vol 14, pg 586, 2005)
    Zhang, LL
    Guo, CX
    CHINESE PHYSICS, 2005, 14 (04): : CP3 - CP3
  • [33] A simplified one-dimensional transient heat transfer model for rocket thrust chamber
    Lv, Junjie
    Gao, Yushan
    Jin, Ping
    Qi, Yaqun
    Liu, Bingyang
    Li, Ruizhi
    Cai, Guobiao
    APPLIED THERMAL ENGINEERING, 2023, 218
  • [34] NUMERICAL-SOLUTIONS OF INVERSE ONE-DIMENSIONAL TRANSIENT HEAT-CONDUCTION EQUATION AND THEIR APPLICATIONS TO TRANSIENT BOILING PROBLEMS
    LAUER, H
    ATOMKERNENERGIE, 1974, 24 (03): : 215 - 215
  • [35] A one-dimensional lumped parameter model representing impedance functions in general structural systems with proportional damping
    Saitoh, Masato
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (03) : 353 - 368
  • [36] AN ANALYSIS OF HEAT CONDUCTION IN POLAR BEAR HAIRS USING ONE-DIMENSIONAL FRACTIONAL MODEL
    Zhu, Wei-Hong
    Zhang, Shao-Tang
    Li, Zheng-Biao
    THERMAL SCIENCE, 2016, 20 (03): : 785 - 788
  • [37] Simple one-dimensional model of heat conduction which obeys Fourier's law
    Garrido, PL
    Hurtado, PI
    Nadrowski, B
    PHYSICAL REVIEW LETTERS, 2001, 86 (24) : 5486 - 5489
  • [38] Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient
    Li Hai-Bin
    Nie Qing-Miao
    Xin Xiao-Tian
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [39] Nonstationary heat conduction in one-dimensional chains with conserved momentum (vol 81, 020103, 2010)
    Gendelman, Oleg V.
    Savin, Alexander V.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [40] Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative
    Yang, Ai-Ming
    Cattani, Carlo
    Jafari, Hossein
    Yang, Xiao-Jun
    ABSTRACT AND APPLIED ANALYSIS, 2013,