Transformation cosmology

被引:18
作者
Chen, Huanyang [1 ,2 ]
Tao, Sicen [1 ,2 ]
Belin, Jakub [3 ]
Courtial, Johannes [3 ]
Miao, Rong-Xin [4 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Key Lab Electromagnet Wave Sci & Detect Technol, Xiamen 361005, Peoples R China
[3] Univ Glasgow, Coll Sci & Engn, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[4] Sun Yat Sen Univ, Sch Phys & Astron, 2 Daxue Rd, Zhuhai 519082, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
GENERAL-RELATIVITY; MIMICKING; PRINCIPLE; WAVES; LIGHT;
D O I
10.1103/PhysRevA.102.023528
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent observation of black hole and gravitational wave has stirred up great interest in Einstein's general relativity. In an optical system, the "optical black hole" has also been a key topic in mimicking black holes. Another good way to study or mimic general relativity effects is based on transformation optics. In this paper, we propose a way by utilizing transformation optics theory to directly obtain the equivalent isotropic refractive index profiles which are the analogies of some static spaces of general relativity, such as de Sitter space, anti-de Sitter space, and Schwarzschild black hole. We find that the analog of de Sitter space is the Poincare disk, while anti-de Sitter space is equivalent to Maxwell's fish-eye lens. In particular, we prove that the optical black hole actually has infinite number of photon spheres, while our black hole only has a single one, which is closer to the real black hole. We study the effect from both geometric optics and wave optics. It can also be generalized to mimic any kind of metrics. Furthermore, with the isotropic refractivity index profile, we visualize the gravitational lensing effect of black hole from our software Dr TIM. The image not only recovers the donutlike halo of black hole, but also shows other phenomena.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [2] First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole
    Akiyama, Kazunori
    Alberdi, Antxon
    Alef, Walter
    Asada, Keiichi
    Azulay, Rebecca
    Baczko, Anne-Kathrin
    Ball, David
    Balokovic, Mislav
    Barrett, John
    Bintley, Dan
    Blackburn, Lindy
    Boland, Wilfred
    Bouman, Katherine L.
    Bower, Geoffrey C.
    Bremer, Michael
    Brinkerink, Christiaan D.
    Brissenden, Roger
    Britzen, Silke
    Broderick, Avery E.
    Broguiere, Dominique
    Bronzwaer, Thomas
    Byun, Do-Young
    Carlstrom, John E.
    Chael, Andrew
    Chan, Chi-kwan
    Chatterjee, Shami
    Chatterjee, Koushik
    Chen, Ming-Tang
    Chen, Yongjun
    Cho, Ilje
    Christian, Pierre
    Conway, John E.
    Cordes, James M.
    Crew, Geoffrey B.
    Cui, Yuzhu
    Davelaar, Jordy
    De Laurentis, Mariafelicia
    Deane, Roger
    Dempsey, Jessica
    Desvignes, Gregory
    Dexter, Jason
    Doeleman, Sheperd S.
    Eatough, Ralph P.
    Falcke, Heino
    Fish, Vincent L.
    Fomalont, Ed
    Fraga-Encinas, Raquel
    Freeman, William T.
    Friberg, Per
    Fromm, Christian M.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
  • [3] [Anonymous], 2016, Applied Mathematics & Information Sciences, DOI 10.18576/amis/100112
  • [4] FDTD analysis of the optical black hole
    Argyropoulos, Christos
    Kallos, Efthymios
    Hao, Yang
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (10) : 2020 - 2025
  • [5] Time travel in transformation optics: Metamaterials with closed null geodesics
    Boston, S. Reece
    [J]. PHYSICAL REVIEW D, 2015, 91 (12):
  • [6] Transformation media that rotate electromagnetic fields
    Chen, Huanyang
    Chan, C. T.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (24)
  • [7] Transformation optics that mimics the system outside a Schwarzschild black hole
    Chen, Huanyang
    Miao, Rong-Xin
    Li, Miao
    [J]. OPTICS EXPRESS, 2010, 18 (14): : 15183 - 15188
  • [8] Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies
    Chen, Huanyang
    Hou, Bo
    Chen, Shuyu
    Ao, Xianyu
    Wen, Weijia
    Chan, C. T.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [9] Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials
    Cheng, Qiang
    Jiang, Wei Xiang
    Cui, Tie Jun
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [10] An omnidirectional electromagnetic absorber made of metamaterials
    Cheng, Qiang
    Cui, Tie Jun
    Jiang, Wei Xiang
    Cai, Ben Geng
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12