Instability of solitary wave solutions for derivative nonlinear Schrodinger equation in endpoint case

被引:11
作者
Ning, Cui [1 ]
Ohta, Masahito [2 ]
Wu, Yifei [3 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Derivative NLS; Orbital instability; Solitary wave solutions; GLOBAL WELL-POSEDNESS; INITIAL-VALUE PROBLEM; STABILITY;
D O I
10.1016/j.jde.2016.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability theory of solitary wave solutions for a type of the derivative nonlinear Schrodinger equation i partial derivative(t)u + partial derivative(2)(x)u + i|u|(2) partial derivative(x)u + b|u|(4) u = 0. The equation has a two-parameter family of solitary wave solutions of the form e(i omega 0t)+i omega(1)/2(x-omega(1)t)-i/4 integral(x-omega 1t)(-infinity) |phi(omega)(eta)(2)d eta(phi omega(x - omega 1t)). The stability theory in the frequency region of |omega(1)| < 2 root omega(0) was studied previously. In this paper, we prove the instability of the solitary wave solutions in the endpoint case w(1) = 2 root w(0), in which the elliptic equation of phi(omega) is "zero mass". (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1671 / 1689
页数:19
相关论文
共 25 条
[1]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[2]   Stability of solitary waves for derivative nonlinear Schrodinger equation [J].
Colin, Mathieu ;
Ohta, Masahito .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :753-764
[3]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[4]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[5]  
Fukuda I., 1981, FUNKC EKVACIOJ-SER I, V24, P85
[6]   ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR DERIVATIVE SCHRODINGER-EQUATION [J].
GUO, BL ;
WU, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (01) :35-55
[7]  
GUO BL, 1991, P ROY SOC EDINB A, V119, P31
[8]   MODIFIED SCATTERING OPERATOR FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION [J].
Guo, Zihua ;
Hayashi, Nakao ;
Lin, Yiquan ;
Naumkin, Pavel I. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) :3854-3871
[9]  
Guo Zihua, DISCRETE CONTIN DY A
[10]   ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
PHYSICA D, 1992, 55 (1-2) :14-36