SKEW CONSTACYCLIC CODES OVER FINITE COMMUTATIVE SEMI-SIMPLE RINGS

被引:4
作者
Dinh, Hai Q. [1 ,2 ]
Bac Trong Nguyen [3 ,4 ]
Sriboonchitta, Songsak [5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Nguyen Tat Thanh Univ, 300 A Nguyen Tat Thanh St, Ho Chi Minh City, Vietnam
[4] Thai Nguyen Univ, Univ Econ & Business Adm, Dept Basic Sci, Ho Chi Minh City, Thai Nguyen Pro, Vietnam
[5] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
关键词
cyclic codes; constacyclic codes; dual codes; skew Theta-cyclic codes; skew Theta-negacyclic codes; skew Theta-lambda-constacyclic codes; CYCLIC CODES;
D O I
10.4134/BKMS.b180314
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates skew Theta-lambda-constacyclic codes over R = F-0 circle plus F-1 circle plus ... circle plus Fk-1, where F-i 's are finite fields. The structures of skew lambda-constacyclic codes over finite commutative semi-simple rings and their duals are provided. Moreover, skew lambda-constacyclic codes of arbitrary length are studied under a new definition. We also show that a skew cyclic code of arbitrary length over finite commutative semi-simple rings is equivalent to either a cyclic code over R or a quasi-cyclic code over R.
引用
收藏
页码:419 / 437
页数:19
相关论文
共 17 条
[1]  
Al-Ashker MM, 2005, ARAB J SCI ENG, V30, P277
[2]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[3]   Skew-cyclic codes [J].
Boucher, D. ;
Geiselmann, W. ;
Ulmer, F. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2007, 18 (04) :379-389
[4]  
Boucher Delphine, 2011, Cryptography and Coding. 13th IMA International Conference, IMACC 2011. Proceedings, P230, DOI 10.1007/978-3-642-25516-8_14
[5]   Skew constacyclic codes over Galois rings [J].
Boucher, Delphine ;
Sole, Patrick ;
Ulmer, Felix .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) :273-292
[6]   Self-dual skew codes and factorization of skew polynomials [J].
Boucher, Delphine ;
Ulmer, Felix .
JOURNAL OF SYMBOLIC COMPUTATION, 2014, 60 :47-61
[7]   Coding with skew polynomial rings [J].
Boucher, Delphine ;
Ulmer, Felix .
JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (12) :1644-1656
[8]   Constacyclic codes over finite commutative semi-simple rings [J].
Dinh, Hai Q. ;
Nguyen, Bac T. ;
Sriboonchitta, Songsak .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 :1-18
[9]   Skew Constacyclic Codes over Finite Fields and Finite Chain Rings [J].
Dinh, Hai Q. ;
Nguyen, Bac T. ;
Sriboonchitta, Songsak .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
[10]   ON REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4p(s) [J].
Dinh, Hai Q. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (02)