Sparse Representations for Text Categorization

被引:0
|
作者
Sainath, Tara N. [1 ]
Maskey, Sameer [1 ]
Kanevsky, Dimitri [1 ]
Ramabhadran, Bhuvana [1 ]
Nahamoo, David [1 ]
Hirschberg, Julia [2 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representations (SRs) are often used to characterize a test signal using few support training examples, and allow the number of supports to be adapted to the specific signal being categorized. Given the good performance of SRs compared to other classifiers for both image classification and phonetic classification, in this paper, we extended the use of SRs for text classification, a method which has thus far not been explored for this domain. Specifically, we demonstrate how sparse representations can be used for text classification and how their performance varies with the vocabulary size of the documents. In addition, we also show that this method offers promising results over the Naive Bayes (NB) classifier, a standard baseline classifier used for text categorization, thus introducing an alternative class of methods for text categorization.
引用
收藏
页码:2266 / +
页数:2
相关论文
共 50 条
  • [1] Place Categorization using Sparse and Redundant Representations
    Carrillo, Henry
    Latif, Yasir
    Neira, Jose
    Castellanos, Jose A.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 4950 - 4957
  • [2] Discriminative Topic Sparse Representation for Text Categorization
    Zheng, Wenbin
    Liu, Yanqiu
    Lu, Huijuan
    Tang, Hong
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 454 - 457
  • [3] Text representations for text categorization: A case study in biomedical domain
    Lan, Man
    Tan, Chew Lim
    Su, Jian
    Low, Hwee Boon
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2556 - +
  • [4] Collaborative text categorization via exploiting sparse coefficients
    Lina Yao
    Quan Z. Sheng
    Xianzhi Wang
    Shengrui Wang
    Xue Li
    Sen Wang
    World Wide Web, 2018, 21 : 373 - 394
  • [5] Feature Selection with Structural Sparse Mode for Text Categorization
    Zheng, Wenbin
    Tang, Dan
    Zhang, Haiqing
    Tang, Hong
    2017 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2017), VOL 1, 2017, : 359 - 362
  • [6] Collaborative text categorization via exploiting sparse coefficients
    Yao, Lina
    Sheng, Quan Z.
    Wang, Xianzhi
    Wang, Shengrui
    Li, Xue
    Wang, Sen
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2018, 21 (02): : 373 - 394
  • [7] Sparse, Dense, and Attentional Representations for Text Retrieval
    Luan, Yi
    Eisenstein, Jacob
    Toutanova, Kristina
    Collins, Michael
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2021, 9 : 329 - 345
  • [8] Non-negative Sparse Semantic Coding for Text Categorization
    Zheng, Wenbin
    Qian, Yuntao
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 409 - 412
  • [9] Hierarchical feature concatenation-based kernel sparse representations for image categorization
    Bo Wang
    Jichang Guo
    Yan Zhang
    Chongyi Li
    The Visual Computer, 2017, 33 : 647 - 663
  • [10] Hierarchical feature concatenation-based kernel sparse representations for image categorization
    Wang, Bo
    Guo, Jichang
    Zhang, Yan
    Li, Chongyi
    VISUAL COMPUTER, 2017, 33 (05): : 647 - 663