Dynamics analysis of an SEIQS model with a nonlinear incidence rate

被引:0
作者
Cui, Ning [1 ]
Li, Jun Hong [1 ]
Qu, Jiao [1 ]
Xue, Hong Dan [1 ]
机构
[1] Hebei Inst Architecture & Civil Engn, Dept Math & Sci, Zhangjiakou 075000, Hebei, Peoples R China
来源
MECHATRONICS AND APPLIED MECHANICS, PTS 1 AND 2 | 2012年 / 157-158卷
关键词
SEIQS model; incidence rate; global stability; limit cycle; simulation; EPIDEMIC MODEL; BIFURCATION-ANALYSIS;
D O I
10.4028/www.scientific.net/AMM.157-158.1220
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers an SEIQS model with nonlinear incidence rate. By means of Lyapunov function and LaSalle's invariant set theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the sufficent conditions for the global stability of the endemic equilibrium by the compound matrix theory. In addition, we also study the phenomena of limit cycle of the systems with the numerical simulations.
引用
收藏
页码:1220 / 1223
页数:4
相关论文
共 11 条
[1]   Bifurcation analysis of an SIRS epidemic model with generalized incidence [J].
Alexander, ME ;
Moghadas, SM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1794-1816
[2]   Periodicity in an epidemic model with a generalized non-linear incidence [J].
Alexander, ME ;
Moghadas, SM .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :75-96
[3]   Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population [J].
Derrick, WR ;
Van Den Driessche, P .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (02) :299-309
[4]  
Hale Jack K., 1969, ORDINARY DIFFERENTIA, P296
[5]   Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study [J].
Hsieh, Ying-Hen ;
King, Chwan-Chuan ;
Chen, Cathy W. S. ;
Ho, Mei-Shang ;
Hsu, Sze-Bi ;
Wu, Yi-Chun .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 244 (04) :729-736
[6]   An SIRS model with a nonlinear incidence rate [J].
Jin, Yu ;
Wang, Wendi ;
Xiao, Shiwu .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1482-1497
[7]   Bifurcation analysis of an epidemic model with nonlinear incidence [J].
Li, Guihua ;
Wang, Wendi .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) :411-423
[8]   A geometric approach to global-stability problems [J].
Li, MY ;
Muldowney, JS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1070-1083
[9]   LOGARITHMIC NORMS AND PROJECTIONS APPLIED TO LINEAR-DIFFERENTIAL SYSTEMS [J].
MARTIN, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 45 (02) :432-454
[10]   Spatio-temporal Simulation of Epidemiological SIQR Model Based on the Multi-Agent System with Focus on Influenza A (H1N1) [J].
Xiao, Hong ;
Tian, Huaiyu ;
Shao, Lei ;
Zhao, Jian ;
Xu, Jing-zhe .
COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2010, 107 :180-+