Exciton-phonon coupling in diindenoperylene thin films

被引:80
|
作者
Heinemeyer, U. [1 ]
Scholz, R. [2 ]
Gisslen, L. [2 ]
Alonso, M. I. [3 ]
Osso, J. O. [3 ,4 ]
Garriga, M. [3 ]
Hinderhofer, A. [1 ]
Kytka, M. [1 ,5 ]
Kowarik, S. [1 ]
Gerlach, A. [1 ]
Schreiber, F. [1 ]
机构
[1] Inst Angew Phys, D-72076 Tubingen, Germany
[2] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[3] Esfera UAB, CSIC, Inst Ciencia Mat Barcelona, Barcelona 08193, Spain
[4] Esfera UAB, MATGAS AIE 2000, Barcelona 08193, Spain
[5] Slovak Tech Univ Bratislava, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.78.085210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate exciton-phonon coupling and exciton transfer in diindenoperylene (DIP) thin films on oxidized Si substrates by analyzing the dielectric function determined by variable-angle spectroscopic ellipsometry. Since the molecules in the thin-film phase form crystallites that are randomly oriented azimuthally and highly oriented along the surface normal, DIP films exhibit strongly anisotropic optical properties with uniaxial symmetry. This anisotropy can be determined by multiple sample analysis. The thin-film spectrum is compared with a monomer spectrum in solution, which reveals similar vibronic subbands and a Huang-Rhys parameter of S approximate to 0.87 for an effective internal vibration at h omega(eff)=0.17 eV. However, employing these parameters the observed dielectric function of the DIP films cannot be described by a pure Frenkel exciton model, and the inclusion of charge-transfer (CT) states becomes mandatory. A model Hamiltonian is parametrized with density-functional theory calculations of single DIP molecules and molecule pairs in the stacking geometry of the thin-film phase, revealing the vibronic coupling constants of DIP in its excited and charged states together with electron and hole transfer integrals along the stack. From a fit of the model calculation to the observed dielectric tensor, we find the lowest CT transition E(00)(CT) at 0.26 +/- 0.05 eV above the neutral molecular excitation energy E(00)(F), which is an important parameter for device applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The Tuning of Exciton-Phonon Coupling in Colloidal Nanocrystals by a Dielectric Medium
    Meir, Itay
    Horani, Faris
    Zuri, Shahar
    Lifshitz, Efrat
    ADVANCED OPTICAL MATERIALS, 2022, 10 (22):
  • [32] STRONG AND WEAK EXCITON-PHONON COUPLING IN MOLECULAR-CRYSTALS
    CLARKE, MD
    CRAIG, DP
    DISSADO, LA
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1978, 44 (3-4): : 309 - 321
  • [33] EXCITON-PHONON COUPLING IN MOLECULAR-CRYSTAL TRAPPING PROCESSES
    CRAIG, DP
    DISSADO, LA
    WALMSLEY, SH
    CHEMICAL PHYSICS, 1980, 46 (1-2) : 87 - 105
  • [34] Excitation and chirality dependence of the exciton-phonon coupling in carbon nanotubes
    Goupalov, SV
    Satishkumar, BC
    Doorn, SK
    PHYSICAL REVIEW B, 2006, 73 (11):
  • [35] Resonant exciton-phonon coupling in ZnO nanorods at room temperature
    Chakraborty, Soumee
    Dhara, S.
    Ravindran, T. R.
    Pal, S. Sarkar
    Kamruddin, M.
    Tyagi, A. K.
    AIP ADVANCES, 2011, 1 (03)
  • [36] EXCITON-PHONON COUPLING IN A DIMER - AN ANALYTIC APPROXIMATION FOR EIGENVALUES AND EIGENVECTORS
    FRIESNER, R
    SILBEY, R
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (02): : 1166 - 1174
  • [37] OPTICAL-ABSORPTION STUDY ON EXCITON-PHONON COUPLING IN GAAS
    BOIS, D
    PINARD, P
    SOLID STATE COMMUNICATIONS, 1972, 11 (01) : 243 - &
  • [38] Effect of Size on the Exciton-Phonon Coupling Strength in ZnO Nanoparticles
    Sharma, A.
    Dhar, S.
    Singh, B. P.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 256 - 257
  • [39] Fractal approach to the exciton-phonon coupling and structure of J aggregates
    Moll, J
    Daehne, S
    Semjonow, A
    Lau, A
    PHYSICAL REVIEW B, 1997, 55 (09) : 5562 - 5565
  • [40] Interplay of Surface and Interior Modes in Exciton-Phonon Coupling at the Nanoscale
    Jasrasaria, Dipti
    Rabani, Eran
    NANO LETTERS, 2021, 21 (20) : 8741 - 8748