Exciton-phonon coupling in diindenoperylene thin films

被引:80
|
作者
Heinemeyer, U. [1 ]
Scholz, R. [2 ]
Gisslen, L. [2 ]
Alonso, M. I. [3 ]
Osso, J. O. [3 ,4 ]
Garriga, M. [3 ]
Hinderhofer, A. [1 ]
Kytka, M. [1 ,5 ]
Kowarik, S. [1 ]
Gerlach, A. [1 ]
Schreiber, F. [1 ]
机构
[1] Inst Angew Phys, D-72076 Tubingen, Germany
[2] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[3] Esfera UAB, CSIC, Inst Ciencia Mat Barcelona, Barcelona 08193, Spain
[4] Esfera UAB, MATGAS AIE 2000, Barcelona 08193, Spain
[5] Slovak Tech Univ Bratislava, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.78.085210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate exciton-phonon coupling and exciton transfer in diindenoperylene (DIP) thin films on oxidized Si substrates by analyzing the dielectric function determined by variable-angle spectroscopic ellipsometry. Since the molecules in the thin-film phase form crystallites that are randomly oriented azimuthally and highly oriented along the surface normal, DIP films exhibit strongly anisotropic optical properties with uniaxial symmetry. This anisotropy can be determined by multiple sample analysis. The thin-film spectrum is compared with a monomer spectrum in solution, which reveals similar vibronic subbands and a Huang-Rhys parameter of S approximate to 0.87 for an effective internal vibration at h omega(eff)=0.17 eV. However, employing these parameters the observed dielectric function of the DIP films cannot be described by a pure Frenkel exciton model, and the inclusion of charge-transfer (CT) states becomes mandatory. A model Hamiltonian is parametrized with density-functional theory calculations of single DIP molecules and molecule pairs in the stacking geometry of the thin-film phase, revealing the vibronic coupling constants of DIP in its excited and charged states together with electron and hole transfer integrals along the stack. From a fit of the model calculation to the observed dielectric tensor, we find the lowest CT transition E(00)(CT) at 0.26 +/- 0.05 eV above the neutral molecular excitation energy E(00)(F), which is an important parameter for device applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO
    Mendelsberg, R. J.
    Allen, M. W.
    Durbin, S. M.
    Reeves, R. J.
    PHYSICAL REVIEW B, 2011, 83 (20)
  • [22] AN EXACTLY SOLUBLE MODEL OF EXCITON-PHONON COUPLING SYSTEMS
    LIN, DL
    LI, X
    GEORGE, TF
    CHINESE JOURNAL OF PHYSICS, 1994, 32 (03) : 299 - 305
  • [23] Exciton-phonon coupling for the lowest Davydov component of quaterthiophene
    Tavazzi, S
    Laicini, M
    Raimondo, L
    Spearman, P
    Borghesi, A
    CHEMICAL PHYSICS LETTERS, 2005, 408 (1-3) : 44 - 48
  • [24] Exciton-phonon interaction in semiconductors with intermediate polaron coupling
    Gartner, P
    Jahnke, F
    Schäfer, W
    PROCEEDINGS OF THE CONFERENCE PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS II, 2003, : 314 - 321
  • [25] Exciton-phonon interaction in semiconductors with intermediate polar coupling
    Schäfer, W
    Gartner, P
    Jahnke, F
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 238 (03): : 552 - 555
  • [26] Excitons and exciton-phonon coupling in the optical response of GaN
    Shokhovets, S.
    Baerwolf, F.
    Gobsch, G.
    Runge, E.
    Koehler, K.
    Ambacher, O.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 2, 2014, 11 (02): : 297 - 301
  • [27] EXCITON-PHONON COUPLING EFFECTS IN ABSORPTION SPECTRUM OF AGCL
    SHAKLEE, KL
    ROWE, JE
    SOLID STATE COMMUNICATIONS, 1969, 7 (11) : R10 - &
  • [28] Exciton-phonon interaction
    不详
    ISOTOPE EFFECTS IN SOLID STATE PHYSICS, 2001, 68 : 135 - 180
  • [29] COMMENTS ON EXCITON-PHONON COUPLING .2. VARIATIONAL SOLUTIONS
    ALLEN, JW
    SILBEY, R
    CHEMICAL PHYSICS, 1979, 43 (03) : 341 - 349
  • [30] ON THE MUNN-SILBEY APPROACH TO NONLOCAL EXCITON-PHONON COUPLING
    ZHAO, Y
    BROWN, DW
    LINDENBERG, K
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (03): : 2335 - 2345