On Gaussian quadrature formulas for the Chebyshev weight

被引:1
|
作者
Shi, YG [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Chebyshev weight; Chebyshev polynomials; Gaussian quadrature formulas;
D O I
10.1006/jath.1998.3284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows that the Chebyshev weight w(x) = (1 - x(2))(-1/2) is the only weight having the property (up to a linear transformation): For each fixed n, the solutions of the extremal problem integral(-1)(1)\Pi(k-1)(n) (x-x(k))/(m)w(x)\Pi(k=1)(n-1)(x - y(k))\(p) (1 - x(2))(p/2) w(x) dx = min(p=xn+..., Q = xn-1 +...) integral(-1)(1)\P(x)\(m)\Q(x)\(p) (1 - x(2))(p/2) w(x)dx are the same for any m, p greater than or equal to 1. (C) 1999 Academic Press.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条