Towards an understanding of the structural molecular mechanism of β2-microglobulin amyloid formation in vitro

被引:52
作者
Radford, SE [1 ]
Gosal, WS
Platt, GW
机构
[1] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Biochem & Microbiol, Leeds LS2 9JT, W Yorkshire, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2005年 / 1753卷 / 01期
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
beta-2-microglobulin; amyloid; NMR; intermediate; AFM;
D O I
10.1016/j.bbapap.2005.07.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deriving a complete understanding of protein self-association into amyloid fibrils across multiple distance and time scales is an enormous challenge. At small length scales, a detailed description of the partially folded protein ensemble that participates in self-assembly remains obscure. At larger length scales, amyloid fibrils are often heterogeneous, can form along multiple pathways, and are further complicated by phenomena such as phase-separation. Over the last 5 years, we have used an array of biophysical approaches in order to elucidate the structural and molecular mechanism of amyloid fibril formation, focusing on the all beta-sheet protein, beta(2)-tricroglubulin (beta 2M). This protein forms amyloid deposits in the human disease 'dialysis-related amyloidosis' (DRA). We have shown that under acidic conditions beta(2)m rapidly associates in vitro to form amyloid-like fibrils that have different morphological properties, but which contain an underpinning cross-beta structure. In this review, we discuss our current knowledge of the structure of these fibrils, as well as the structural, kinetic and thermodynamic relationship between fibrils with different morphologies. The results provide some of the first insights into the shape of the self-assembly free-energy landscape for this protein and highlight the parallel nature of the assembly process. We include a detailed description of the structure and dynamics of partially folded and acid unfolded species Of beta(2)m using NMR, and highlight regions thought to be important in early self-association events. Finally, we discuss briefly how knowledge of assembly mechanisms in vitro can be used to inform the design of therapeutic strategies for this, and other amyloid disorders, and we speculate on how the increasing power of biophysical approaches may lead to a fuller description of protein self-assembly into amyloid in the future. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 85 条
[1]   Biological activity and pathological implications of misfolded proteins [J].
Bellotti, V ;
Mangione, P ;
Stoppini, M .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (6-7) :977-991
[2]   β2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils [J].
Bellotti, V ;
Stoppini, M ;
Mangione, P ;
Sunde, M ;
Robinson, C ;
Asti, L ;
Brancaccio, D ;
Ferri, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (01) :61-67
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   STRUCTURE OF THE HUMAN CLASS-I HISTOCOMPATIBILITY ANTIGEN, HLA-A2 [J].
BJORKMAN, PJ ;
SAPER, MA ;
SAMRAOUI, B ;
BENNETT, WS ;
STROMINGER, JL ;
WILEY, DC .
NATURE, 1987, 329 (6139) :506-512
[5]   Separation of β2-microglobulin conformers by high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to electrospray ionisation mass spectrometry [J].
Borysik, AJH ;
Read, P ;
Little, DR ;
Bateman, RH ;
Radford, SE ;
Ashcroft, AE .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2004, 18 (19) :2229-2234
[6]   Co-populated conformational ensembles of β2-microglobulin uncovered quantitatively by electrospray ionization mass spectrometry [J].
Borysik, AJH ;
Radford, SE ;
Ashcroft, AE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :27069-27077
[7]  
CAMPISTOL JM, 1992, AM J PATHOL, V141, P241
[8]   Polymerization of normal and intact beta(2)-microglobulin as the amyloidogenic protein in dialysis-amyloidosis [J].
Campistol, JM ;
Bernard, D ;
Papastoitsis, G ;
Sole, M ;
Kasirsky, J ;
Skinner, M .
KIDNEY INTERNATIONAL, 1996, 50 (04) :1262-1267
[9]   Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy [J].
Castellani, F ;
van Rossum, B ;
Diehl, A ;
Schubert, M ;
Rehbein, K ;
Oschkinat, H .
NATURE, 2002, 420 (6911) :98-102
[10]   Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders [J].
Caughey, B ;
Lansbury, PT .
ANNUAL REVIEW OF NEUROSCIENCE, 2003, 26 :267-298