Hyperspectral Image Denoising with Segmentation-based Low Rank Representation

被引:0
作者
Ma, Jiayi [1 ]
Jiang, Junjun [2 ]
Li, Chang [3 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
来源
2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP) | 2016年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Denoising; graph based segmentation; hyper-spectral image; low-rank representation; mixed noise; CLASSIFICATION;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Recently, low-rank representation (LRR) based hyperspectral image (HSI) denoising method has been proven to be a powerful tool for removing different kinds of noise simultaneously, such as Gaussian, dead pixels and impulse noise. However, the LRR based method cannot make full use of the spatial information in HSI. In this paper, we integrate the graph based segmentation (GS) into the LRR, and propose a novel denoising method named GS-LRR. We first use the principle component analysis (PCA) to obtain the first principle component of HSI. Then the graph based segmentation is adopted to the first principle component of 1151 to get homogeneous regions Finally, we employ the LRR to each homogeneous region of HSI, which enable us to simultaneously remove all the above mentioned mixed noise. Extensive experiments on both simulated and real HSIs demonstrate the efficiency of the proposed GS-LRR.
引用
收藏
页数:4
相关论文
共 21 条
  • [11] Hyperspectral image denoising using the robust low-rank tensor recovery
    Li, Chang
    Ma, Yong
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (09) : 1604 - 1612
  • [12] Robust Recovery of Subspace Structures by Low-Rank Representation
    Liu, Guangcan
    Lin, Zhouchen
    Yan, Shuicheng
    Sun, Ju
    Yu, Yong
    Ma, Yi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 171 - 184
  • [13] A Deterministic Analysis for LRR
    Liu, Guangcan
    Xu, Huan
    Tang, Jinhui
    Liu, Qingshan
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (03) : 417 - 430
  • [14] Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis
    Liu, Xuefeng
    Bourennane, Salah
    Fossati, Caroline
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10): : 3717 - 3724
  • [15] Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming
    Ma, Jiayi
    Zhou, Huabing
    Zhao, Ji
    Gao, Yuan
    Jiang, Junjun
    Tian, Jinwen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12): : 6469 - 6481
  • [16] Robust Estimation of Nonrigid Transformation for Point Set Registration
    Ma, Jiayi
    Zhao, Ji
    Tian, Jinwen
    Tu, Zhuowen
    Yuille, Alan L.
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2147 - 2154
  • [17] Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction
    Maggioni, Matteo
    Katkovnik, Vladimir
    Egiazarian, Karen
    Foi, Alessandro
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 119 - 133
  • [18] A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching
    Mei, Xiaoguang
    Ma, Yong
    Li, Chang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    [J]. SENSORS, 2015, 15 (07) : 15868 - 15887
  • [19] Segmentation and classification of hyperspectral images using watershed transformation
    Tarabalka, Y.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. PATTERN RECOGNITION, 2010, 43 (07) : 2367 - 2379
  • [20] Sparse Reconstruction by Separable Approximation
    Wright, Stephen J.
    Nowak, Robert D.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2479 - 2493