Bounds on the regularity and projective dimension of ideals associated to graphs

被引:101
作者
Dao, Hailong [1 ]
Huneke, Craig [1 ]
Schweig, Jay [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Projective dimension; Regularity; Edge ideals; Serre's condition; LOCAL COHOMOLOGY; RESOLUTIONS; COMPLEXES;
D O I
10.1007/s10801-012-0391-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give new upper bounds on the regularity of edge ideals whose resolutions are k-step linear; surprisingly, the bounds are logarithmic in the number of variables. We also give various bounds for the projective dimension of such ideals, generalizing other recent results. By Alexander duality, our results also apply to unmixed square-free monomial ideals of codimension two. We also discuss and connect these results to more classical topics in commutative algebra.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 37 条
  • [1] [Anonymous], 1990, TOPICS ALGEBRA
  • [2] Chudnovsky M., 2005, BCC, V327, P153
  • [3] Dao H., CONSTRUCT LOG CANONI
  • [4] Dochtermann A, 2009, ELECTRON J COMB, V16
  • [5] Cohomology on toric varieties and local cohomology with monomial supports
    Eisenbud, D
    Mustata, M
    Stillman, M
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 583 - 600
  • [6] Restricting linear syzygies: algebra and geometry
    Eisenbud, D
    Green, M
    Hulek, K
    Popescu, S
    [J]. COMPOSITIO MATHEMATICA, 2005, 141 (06) : 1460 - 1478
  • [7] Eisenbud D., 2013, Graduate Texts in Mathematics, V150
  • [8] FALTINGS G, 1980, J REINE ANGEW MATH, V313, P43
  • [9] Sequentially Cohen-Macaulay edge ideals
    Francisco, Christopher A.
    Van Tuyl, Adam
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2327 - 2337
  • [10] Simplicial Girth and Pure Resolutions
    Goff, Michael
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (02) : 225 - 240