Kronecker limit formula for real quadratic number fields (III)

被引:3
作者
Lu, HW [1 ]
Ji, CG
Jiao, RZ
机构
[1] Tongji Univ, Inst Math, Shanghai 200092, Peoples R China
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2001年 / 44卷 / 09期
基金
中国国家自然科学基金;
关键词
quadratic number fields; Kronecker limit formula; Dedekind eta-function; Dirichlet character; I-functions; Eisenstein series;
D O I
10.1007/BF02877430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a kind of L-function of the real quadratic number fields, we prove a Kronecker limit formula which generalized a result of Hecke. And taking an example we give an interesting identity on a fundamental unit of such a field.
引用
收藏
页码:1132 / 1138
页数:7
相关论文
共 37 条
[21]   A Voronoi-Oppenheim summation formula for number fields [J].
QI, Z. H. I. .
ACTA ARITHMETICA, 2022, 204 (03) :269-285
[22]   ON ZETA AND L-FUNCTIONS OVER QUADRATIC NUMBER FIELDS [J].
Kokluce, Bulent .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2008, 26 (04) :267-280
[23]   The relative Hecke integral formula for an arbitrary extension of number fields [J].
Bekki, Hohto .
JOURNAL OF NUMBER THEORY, 2019, 197 :185-217
[24]   Simultaneous indivisibility of class numbers of pairs of real quadratic fields [J].
Chattopadhyay, Jaitra ;
Saikia, Anupam .
RAMANUJAN JOURNAL, 2022, 58 (03) :905-911
[25]   Simultaneous indivisibility of class numbers of pairs of real quadratic fields [J].
Jaitra Chattopadhyay ;
Anupam Saikia .
The Ramanujan Journal, 2022, 58 :905-911
[26]   Geometric-progression-free sets over quadratic number fields [J].
Best, Andrew ;
Huan, Karen ;
McNew, Nathan ;
Miller, Steven J. ;
Powell, Jasmine ;
Tor, Kimsy ;
Weinstein, Madeleine .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) :245-262
[27]   Bounded gaps between product of two primes in imaginary quadratic number fields [J].
Darbar, Pranendu ;
Mukhopadhyay, Anirban ;
Viswanadham, G. K. .
RESEARCH IN NUMBER THEORY, 2023, 9 (01)
[28]   Bounded gaps between product of two primes in imaginary quadratic number fields [J].
Pranendu Darbar ;
Anirban Mukhopadhyay ;
G. K. Viswanadham .
Research in Number Theory, 2023, 9
[29]   A note on the simultaneous 3-divisibility of class numbers of tuples of real quadratic fields [J].
Mohit Mishra ;
Anupam Saikia .
The Ramanujan Journal, 2024, 64 :465-474
[30]   A note on the simultaneous 3-divisibility of class numbers of tuples of real quadratic fields [J].
Mishra, Mohit ;
Saikia, Anupam .
RAMANUJAN JOURNAL, 2024, 64 (02) :465-474