Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates

被引:66
作者
Thurtle-Schmidt, Deborah M. [1 ,2 ]
Lo, Te-Wen [3 ]
机构
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
[2] Davidson Coll, Dept Biol, Davidson, NC 28035 USA
[3] Ithaca Coll, Dept Biol, Ithaca, NY 14850 USA
关键词
CRISPR; Cas9; dCas9; CAENORHABDITIS-ELEGANS GENOME; RNA-GUIDED ENDONUCLEASE; OFF-TARGET; CRISPR-CAS9; SYSTEM; CAS SYSTEMS; HUMAN-CELLS; DESIGN; RECOMBINATION; INACTIVATION; SPECIFICITY;
D O I
10.1002/bmb.21108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing techniques has elevated the possibilities of genetic manipulations in numerous organisms in which these experiments were previously not readily accessible or possible. Introducing the next generation of molecular biologists to these emerging techniques is key in the modern biology classroom. This comprehensive review introduces undergraduates to CRISPR/Cas9 editing and its uses in genetic studies. The goals of this review are to explain how CRISPR functions as a prokaryotic immune system, describe how researchers generate mutations with CRISPR/Cas9, highlight how Cas9 has been adapted for new functions, and discuss ethical considerations of genome editing. Additionally, anticipatory guides and questions for discussion are posed throughout the review to encourage active exploration of these topics in the classroom. Finally, the supplement includes a study guide and practical suggestions to incorporate CRISPR/Cas9 experiments into lab courses at the undergraduate level. (c) 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 46(2):195-205, 2018.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 53 条
[1]  
a Berkowitz L., 2008, JOVE-J VIS EXP, P4
[2]   Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice [J].
Aida, Tomomi ;
Chiyo, Keiho ;
Usami, Takako ;
Ishikubo, Harumi ;
Imahashi, Risa ;
Wada, Yusaku ;
Tanaka, Kenji F. ;
Sakuma, Tetsushi ;
Yamamoto, Takashi ;
Tanaka, Kohichi .
GENOME BIOLOGY, 2015, 16
[3]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[4]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[5]   Is Non-Homologous End-Joining Really an Inherently Error-Prone Process? [J].
Betermier, Mireille ;
Bertrand, Pascale ;
Lopez, Bernard S. .
PLOS GENETICS, 2014, 10 (01)
[6]   CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation [J].
Bhaya, Devaki ;
Davison, Michelle ;
Barrangou, Rodolphe .
ANNUAL REVIEW OF GENETICS, VOL 45, 2011, 45 :273-297
[7]   Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J].
Bolotin, A ;
Ouinquis, B ;
Sorokin, A ;
Ehrlich, SD .
MICROBIOLOGY-SGM, 2005, 151 :2551-2561
[8]   Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System [J].
Chen, Baohui ;
Gilbert, Luke A. ;
Cimini, Beth A. ;
Schnitzbauer, Joerg ;
Zhang, Wei ;
Li, Gene-Wei ;
Park, Jason ;
Blackburn, Elizabeth H. ;
Weissman, Jonathan S. ;
Qi, Lei S. ;
Huang, Bo .
CELL, 2013, 155 (07) :1479-1491
[9]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[10]   Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans [J].
Cromie, GA ;
Connelly, JC ;
Leach, DRF .
MOLECULAR CELL, 2001, 8 (06) :1163-1174