Semi-cardinal polyspline interpolation with Beppo Levi boundary conditions

被引:6
作者
Bejancu, Aurelian [1 ]
机构
[1] Kuwait Univ, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
Multivariable interpolation; Polyharmonic functions; Boundary conditions; L-splines; Wiener-Hopf factorization;
D O I
10.1016/j.jat.2008.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of interpolation to a sequence of n-variate periodic data functions prescribed on {j} x R(n), j epsilon Z(+), from a space of piecewise polyharmonic functions (polysplines) of n + 1 variables. A unique solution is obtained subject to boundary conditions of the type employed in Duchon's theory of polyharmonic Surface splines. The construction of the polyspline scheme is based on the extension of Schoenberg's semi-cardinal interpolation model to a class of univariate L-splines. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 73
页数:22
相关论文
共 24 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 2001, MULTIVARIATE POLYSPL
[3]   Cardinal interpolation with periodic polysplines on strips [J].
Bejancu, A. ;
Kounchev, O. I. ;
Render, H. .
CALCOLO, 2007, 44 (04) :203-217
[4]   Maximal approximation order for a box-spline semi-cardinal interpolation scheme on the three-direction mesh [J].
Bejancu, A ;
Sabin, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 22 (03) :275-298
[5]  
Bejancu A., 2003, CURVE SURFACE FITTIN, P41
[6]  
Bejancu A., 2000, E J APPROX THEORY, V6, P465
[7]  
Bejancu A., 2000, E J APPROX, V6, P447
[8]  
BEJANCU A, 2002, APPROXIMATION THEORY, V10, P27
[10]   Semi-infinite cardinal interpolation with multiquadrics and beyond [J].
Buhmann, MD .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) :57-80