Willmore surfaces in Sn

被引:32
作者
Li, HZ [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Willmore surface; minimal surface; pinching; Veronese surface;
D O I
10.1023/A:1014759309675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A surface x: M --> S-n is called a Willmore surface if it is a critic al surface of the Willmore functional. It is well known that any minimal surface is a Willmore surface and that many nonminimal Willmore surfaces exists. In this paper, we establish an integral inequality for compact Willmore surfaces in S-n and obtain a new characterization of the Veronese surface in S-4 as a Willmore surface. Our result reduces to a well-known result in the case of minimal surfaces.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 21 条
[1]  
Benko K., 1979, COLLOQ MATH-WARSAW, V42, P19
[2]  
BRYANT RL, 1984, J DIFFER GEOM, V20, P23
[3]   Willmore surfaces of R4 and the Whitney sphere [J].
Castro, I ;
Urbano, F .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (02) :153-175
[4]  
Chen B. Y., 1974, Boll. Un. Mat. Ital., V10, P380
[5]  
Chen B. Y., 1973, GEOMETRY SUBMANIFOLD
[6]  
Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
[7]   A COUNTER EXAMPLE FOR WEINERS OPEN QUESTION [J].
EJIRI, N .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (02) :209-211
[8]  
HERTRICHJEROMIN U, 1992, J REINE ANGEW MATH, V430, P21
[9]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[10]   MINIMAL IMMERSIONS OF 2-MANIFOLDS INTO SPHERES [J].
KOZLOWSKI, M ;
SIMON, U .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :377-382