Band structure analysis of leaky Bloch waves in 2D phononic crystal plates

被引:32
作者
Mazzotti, Matteo [1 ]
Miniaci, Marco [2 ]
Bartoli, Ivan [1 ]
机构
[1] Drexel Univ, Civil Architectural & Environm Engn Dept, 3141 Chestnut St, Philadelphia, PA 19104 USA
[2] Univ Havre, Lab Ondes & Milieux Complexes, UMR CNRS 6294, 75 Rue Bellot, F-76600 Le Havre, France
关键词
Phononic crystals; Leaky Bloch waves; Attenuation; Band structure; Finite element method; Plane wave expansion method; FINITE-ELEMENT-METHOD; LAMB WAVES; SCATTERING; PROPAGATION; DISPERSION; GUIDES; MEDIA;
D O I
10.1016/j.ultras.2016.10.006
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The method enables the computation of both real (propagative) and imaginary (attenuation) components of the Bloch wavenumber at any given frequency. Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylindrical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 27 条
[1]   Full-wave analysis of bound and leaky modes propagating along 2D periodic printed structures with arbitrary metallisation in the unit cell [J].
Baccarelli, P. ;
Paulotto, S. ;
Di Nallo, C. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2007, 1 (01) :217-225
[2]   An integral method for solving nonlinear eigenvalue problems [J].
Beyn, Wolf-Juergen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :3839-3863
[3]   Photonic band structure calculations using scattering matrices [J].
Botten, LC ;
Nicorovici, NA ;
McPhedran, RC ;
de Sterke, CM ;
Asatryan, AA .
PHYSICAL REVIEW E, 2001, 64 (04) :18
[4]   Lamb waves in phononic crystal slabs: Truncated plane parallels to the axis of periodicity [J].
Chen, Jiujiu ;
Xia, Yunjia ;
Han, Xu ;
Zhang, Hongbo .
ULTRASONICS, 2012, 52 (07) :920-924
[5]   Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems [J].
Collet, M. ;
Ouisse, M. ;
Ruzzene, M. ;
Ichchou, M. N. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (20) :2837-2848
[6]   Transformation elastodynamics and cloaking for flexural waves [J].
Colquitt, D. J. ;
Brun, M. ;
Gei, M. ;
Movchan, A. B. ;
Movchan, N. V. ;
Jones, I. S. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 72 :131-143
[7]   FREE-WAVE PROPAGATION IN AN IRREGULARLY STIFFENED, FLUID-LOADED PLATE [J].
EATWELL, GP .
JOURNAL OF SOUND AND VIBRATION, 1983, 88 (04) :507-522
[8]   Engineering surface waves in flat phononic plates [J].
Estrada, Hector ;
Candelas, Pilar ;
Belmar, Francisco ;
Uris, Antonio ;
Javier Garcia de Abajo, F. ;
Meseguer, Francisco .
PHYSICAL REVIEW B, 2012, 85 (17)
[9]  
Graczyk P., AIP ADV, V4
[10]   Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals [J].
Graczykowski, B. ;
Alzina, F. ;
Gomis-Bresco, J. ;
Torres, C. M. Sotomayor .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (02)