Supersymmetric models for fermions on a lattice

被引:6
作者
Ilieva, N [1 ]
Narnhofer, H
Thirring, W
机构
[1] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[2] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[3] Erwin Schrodinger Int Inst Math Phys, A-1090 Vienna, Austria
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2006年 / 54卷 / 2-3期
关键词
D O I
10.1002/prop.200510261
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the large-N behaviour of simple examples of supersymmetric interactions for fermions on a lattice. Witten's supersymmetric quantum mechanics and the BCS model appear just as two different aspects of one and the same model. For the BCS model, supersymmetry is only respected in a coherent superposition of Bogoliubov states. In this coherent superposition mesoscopic observables show better stability properties than in a Bogoliubov state. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:124 / 138
页数:15
相关论文
共 11 条
[1]   Lattice fermion models with supersymmetry [J].
Fendley, P ;
Nienhuis, B ;
Schoutens, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (50) :12399-12424
[2]   Lattice models with N=2 supersymmetry -: art. no. 120402 [J].
Fendley, P ;
Schoutens, K ;
de Boer, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (12)
[3]   NON-COMMUTATIVE CENTRAL LIMITS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (04) :527-544
[4]   FLUCTUATION OSCILLATIONS AND SYMMETRY-BREAKING - THE BCS-MODEL [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1991, 106 (04) :375-383
[5]   DYNAMICS OF FLUCTUATIONS FOR QUANTUM-LATTICE SYSTEMS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (03) :533-549
[6]  
Martin P. A., 2004, MANY BODY PROBLEMS Q, V2nd
[7]   The time evolution of fluctuation algebra in mean field theories [J].
Narnhofer, H .
FOUNDATIONS OF PHYSICS LETTERS, 2004, 17 (03) :235-253
[8]  
Sewell G. L., 2002, QUANTUM MECH ITS EME
[9]  
Thirring W., 1967, Commun. Math. Phys, V4, P303, DOI DOI 10.1007/BF01653644
[10]   PHASE-TRANSITIONS AND ALGEBRA OF FLUCTUATION OPERATORS IN AN EXACTLY SOLUBLE MODEL OF A QUANTUM ANHARMONIC CRYSTAL [J].
VERBEURE, A ;
ZAGREBNOV, VA .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (1-2) :329-359