RELATIVE ENTROPY METHOD FOR THE RELAXATION LIMIT OF HYDRODYNAMIC MODELS

被引:17
作者
Carrillo, Jose Antonio [1 ]
Peng, Yingping [2 ,3 ]
Wroblewska-Kaminska, Aneta [4 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
[4] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
Relative entropy method; aggregation-diffusions; nonlocal hydrodynamics; relaxation limit; COMPRESSIBLE EULER EQUATIONS; WEAK SOLUTIONS; LARGE FRICTION; CONVERGENCE; SYSTEM; DIFFUSION; STABILITY; EXISTENCE; SPACE; MASS;
D O I
10.3934/nhm.2020023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.
引用
收藏
页码:369 / 387
页数:19
相关论文
共 38 条
[1]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[2]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[3]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[4]   PHASE-TRANSITIONS AND HYSTERESIS IN NONLOCAL AND ORDER-PARAMETER MODELS [J].
BRANDON, D ;
LIN, T ;
ROGERS, RC .
MECCANICA, 1995, 30 (05) :541-565
[5]   Equilibria of homogeneous functionals in the fair-competition regime [J].
Calvez, V. ;
Carrillo, J. A. ;
Hoffmann, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 :85-128
[6]   Contractions in the 2-Wasserstein length space and thermalization of granular media [J].
Carrillo, JA ;
McCann, RJ ;
Villani, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :217-263
[7]  
Carrillo JA, 2003, REV MAT IBEROAM, V19, P971
[8]   Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces [J].
Carrillo, Jose A. ;
Choi, Young-Pil .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (04) :925-954
[9]   Convergence to Equilibrium in Wasserstein Distance for Damped Euler Equations with Interaction Forces [J].
Carrillo, Jose A. ;
Choi, Young-Pil ;
Tse, Oliver .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (01) :329-361
[10]   Ground states in the diffusion-dominated regime [J].
Carrillo, Jose A. ;
Hoffmann, Franca ;
Mainini, Edoardo ;
Volzone, Bruno .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)