A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem

被引:39
作者
Wang, Jun-Gang [1 ]
Zhou, Yu-Bin [1 ]
Wei, Ting [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Backward problem; Fractional diffusion equation; Quasi-boundary value method; Convergence analysis; A posteriori parameter choice rule; PARABOLIC EQUATIONS BACKWARD; CAUCHY-PROBLEM; TRANSPORT;
D O I
10.1016/j.aml.2013.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. We propose a quasi-boundary value regularization method combined with an a posteriori regularization parameter choice rule to deal with the backward problem and give the corresponding convergence estimate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:741 / 747
页数:7
相关论文
共 27 条
[1]   Asymptotic behavior for two regularizations of the cauchy problem for the backward heat equation [J].
Ames, KA ;
Payne, LE .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (01) :187-202
[2]   A kernel-based method for the approximate solution of backward parabolic problems [J].
Ames, KA ;
Epperson, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1357-1390
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 2009, INVERSE PROBL
[5]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[6]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[7]   Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations [J].
Chi, Guangsheng ;
Li, Gongsheng ;
Jia, Xianzheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1619-1626
[8]   A modified quasi-boundary value method for ill-posed problems [J].
Denche, M ;
Bessila, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :419-426
[9]   A non-local boundary value problem method for parabolic equations backward in time [J].
Dinh Nho Hao ;
Nguyen Van Duc ;
Sahli, Hichem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :805-815
[10]  
Engl H. W., 1996, REGULARIZATION INVER, V375