Multiscale models for fluid mixing

被引:13
作者
Lim, H. [1 ]
Yu, Y. [1 ]
Jin, H. [2 ]
Kim, D. [1 ]
Lee, H. [3 ]
Glimm, J. [1 ,4 ]
Li, X-L [1 ]
Sharp, D. H. [5 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Jeju Natl Univ, Dept Math, Cheju 690756, South Korea
[3] Univ Illinois, Urbana, IL 61801 USA
[4] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11793 USA
[5] Los Alamos Natl Lab, Los Alamos, NM USA
关键词
turbulence; multiphase flow; averaged equations; closure; subgrid models;
D O I
10.1016/j.cma.2008.02.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent work of the authors and colleagues on the turbulent mixing of compressible fluids is developed and extended with an emphasis on the multiscale aspects of this work. Specifically, we study an interplay between micro and macro aspects of mixing. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3435 / 3444
页数:10
相关论文
共 44 条
[1]   Discrete equations for physical and numerical compressible multiphase mixtures [J].
Abgrall, R ;
Saurel, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :361-396
[2]   Finite volume simulation of cavitating flows [J].
Barberon, T ;
Helluy, P .
COMPUTERS & FLUIDS, 2005, 34 (07) :832-858
[3]  
BATCHELOR GK, 1959, J FLUID MECH, V5, P29
[4]  
BO W, COMPUT MATH IN PRESS
[5]   Search for neutrinoless τ decays involving the KS0 meson -: art. no. 071101 [J].
Chen, S ;
Hinson, JW ;
Lee, J ;
Miller, DH ;
Pavlunin, V ;
Shibata, EI ;
Shipsey, IPJ ;
Cronin-Hennessy, D ;
Lyon, AL ;
Park, CS ;
Park, W ;
Thorndike, EH ;
Coan, TE ;
Gao, YS ;
Liu, F ;
Maravin, Y ;
Stroynowski, R ;
Artuso, M ;
Boulahouache, C ;
Bukin, K ;
Dambasuren, E ;
Khroustalev, K ;
Mountain, R ;
Nandakumar, R ;
Skwarnicki, T ;
Stone, S ;
Wang, JC ;
Mahmood, AH ;
Csorna, SE ;
Danko, I ;
Bonvicini, G ;
Cinabro, D ;
Dubrovin, M ;
McGee, S ;
Bornheim, A ;
Lipeles, E ;
Pappas, SP ;
Shapiro, A ;
Sun, WM ;
Weinstein, AJ ;
Mahapatra, R ;
Briere, RA ;
Chen, GP ;
Ferguson, T ;
Tatishvili, G ;
Vogel, H ;
Adam, NE ;
Alexander, JP ;
Berkelman, K ;
Boisvert, V .
PHYSICAL REVIEW D, 2002, 66 (07)
[6]  
CHEN Y, 1995, THESIS U STONY BROOK
[7]   A two-phase flow model of the Rayleigh-Taylor mixing zone [J].
Chen, YP ;
Glimm, J ;
Sharp, DH ;
Zhang, Q .
PHYSICS OF FLUIDS, 1996, 8 (03) :816-825
[8]   A multi-temperature multiphase flow model [J].
Cheng, B ;
Glimm, J ;
Sharp, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (02) :211-238
[9]   Density dependence of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts [J].
Cheng, BL ;
Glimm, J ;
Sharp, DH .
PHYSICS LETTERS A, 2000, 268 (4-6) :366-374
[10]  
COURANT R, 1967, SUPERSONIC FLOW SHOC