Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection

被引:182
作者
Chen, Lisha [1 ]
Huang, Jianhua Z. [2 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06511 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Group lasso penalty; Low rank matrix approximation; Multivariate regression; Penalized least squares; Sparsity; Stiefel manifold; SACCHAROMYCES-CEREVISIAE; MULTIVARIATE REGRESSION; LINEAR-REGRESSION; LASSO; SHRINKAGE;
D O I
10.1080/01621459.2012.734178
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the dumber of model parameters and takes advantage of interrelations between. the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection.
引用
收藏
页码:1533 / 1545
页数:13
相关论文
共 21 条
[11]  
Reinsel G.C., 1998, MULTIVARIATE REDUCED, V136, DOI DOI 10.1007/978-1-4757-2853-8
[12]   Sparse Multivariate Regression With Covariance Estimation [J].
Rothman, Adam J. ;
Levina, Elizaveta ;
Zhu, Ji .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) :947-962
[13]   Input selection and shrinkage in multiresponse linear regression [J].
Simila, Timo ;
Tikka, Jarkko .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :406-422
[14]   Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization [J].
Spellman, PT ;
Sherlock, G ;
Zhang, MQ ;
Iyer, VR ;
Anders, K ;
Eisen, MB ;
Brown, PO ;
Botstein, D ;
Futcher, B .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3273-3297
[16]   Simultaneous variable selection [J].
Turlach, BA ;
Venables, WN ;
Wright, SJ .
TECHNOMETRICS, 2005, 47 (03) :349-363
[17]   A note on adaptive group lasso [J].
Wang, Hansheng ;
Leng, Chenlei .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) :5277-5286
[18]   Group SCAD regression analysis for microarray time course gene expression data [J].
Wang, Lifeng ;
Chen, Guang ;
Li, Hongzhe .
BIOINFORMATICS, 2007, 23 (12) :1486-1494
[19]   Dimension reduction and coefficient estimation in multivariate linear regression [J].
Yuan, Ming ;
Ekici, Ali ;
Lu, Zhaosong ;
Monteiro, Renato .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :329-346
[20]   The adaptive lasso and its oracle properties [J].
Zou, Hui .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) :1418-1429