Monotonicity-based electrical impedance tomography for lung imaging

被引:46
|
作者
Zhou, Liangdong [1 ]
Harrach, Bastian [2 ]
Seo, Jin Keun [3 ]
机构
[1] Weill Cornell Med Coll, Dept Radiol, New York, NY USA
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
[3] Yonsei Univ, Dept Computat Sci & Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
electrical impedance tomography; continuous lung monitoring; monotonicity; inverse problem; monotonicity-based regularization; SHAPE-RECONSTRUCTION; EIT RECONSTRUCTION; VENTILATION; REGULARIZATION; DERECRUITMENT; RECRUITMENT; FREQUENCY; MODEL;
D O I
10.1088/1361-6420/aaaf84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] MONOTONICITY-BASED SHAPE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Harrach, Bastian
    Ullrich, Marcel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3382 - 3403
  • [2] MONOTONICITY-BASED RECONSTRUCTION OF EXTREME INCLUSIONS IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Candiani, Valentina
    Darde, Jeremi
    Garde, Henrik
    Hyvonen, Nuutti
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6234 - 6259
  • [3] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Garde, Henrik
    Staboulis, Stratos
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1221 - 1251
  • [4] Monotonicity-Based Regularization for Phantom Experiment Data in Electrical Impedance Tomography
    Harrach, Bastian
    Mach Nguyet Minh
    NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 107 - 120
  • [5] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Henrik Garde
    Stratos Staboulis
    Numerische Mathematik, 2017, 135 : 1221 - 1251
  • [6] Lung Ventilation Imaging based on Structural Model by Electrical Impedance Tomography
    Chen, X. Y.
    Wang, H. X.
    Fan, W. Y.
    Lv, Z. Y.
    2009 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, 2009, : 315 - +
  • [7] Capacitively Coupled Electrical Impedance Tomography in Lung Imaging
    Guo, Yuxi
    Zhu, Liying
    Wang, Minmin
    Jiang, Yandan
    Soleimani, Manuchehr
    Zhang, Maomao
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 33072 - 33082
  • [8] LUNG FUNCTIONAL IMAGING BASED ON MULTI-FREQUENCY ELECTRICAL IMPEDANCE TOMOGRAPHY
    Li, S.
    Shao, X. D.
    Chen, G. D.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2015, 117 : 41 - 41
  • [9] ELECTRICAL IMPEDANCE TOMOGRAPHY RECONSTRUCTION USING A MONOTONICITY APPROACH BASED ON A PRIORI KNOWLEDGE
    Flores-Tapia, Daniel
    Pistorius, Stephen
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4996 - 4999
  • [10] Feasibility of neonatal lung imaging using electrical impedance tomography
    Taktak, A
    Spencer, A
    Record, P
    Gadd, R
    Rolfe, P
    EARLY HUMAN DEVELOPMENT, 1996, 44 (02) : 131 - 138