Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes

被引:226
|
作者
Cheng, Lei [1 ,2 ]
Wu, Cheng Hao [3 ,4 ]
Jarry, Angelique [1 ]
Chen, Wei [1 ]
Ye, Yifan [5 ,6 ,7 ]
Zhu, Junfa [6 ,7 ]
Kostecki, Robert [1 ]
Persson, Kristin [1 ]
Guo, Jinghua [5 ]
Salmeron, Miguel [2 ,4 ]
Chen, Guoying [1 ]
Doeff, Marca [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[6] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[7] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230029, Peoples R China
关键词
interface; interfacial resistance; solid electrolyte; solid state battery; surface stability; IONIC-CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; CONDUCTORS LI7LA3ZR2O12; LITHIUM; MICROSTRUCTURE; RAMAN; GE;
D O I
10.1021/acsami.5b02528
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (similar to 150 mu m) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (similar to 20 mu m) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.
引用
收藏
页码:17649 / 17655
页数:7
相关论文
共 50 条
  • [31] Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte
    Huang, Xiao
    Lu, Yang
    Song, Zhen
    Rui, Kun
    Wang, Qingsong
    Xiu, Tongping
    Badding, Michael E.
    Wen, Zhaoyin
    ENERGY STORAGE MATERIALS, 2019, 22 : 207 - 217
  • [32] Stability investigations of composite solid electrolytes based on Li7La3Zr2O12 in contact with LiCoO2
    Il'ina, E. A.
    Antonov, B. D.
    Vlasov, M., I
    SOLID STATE IONICS, 2020, 356
  • [33] Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention
    Tsai, Chill-Long
    Roddatis, Vladimir
    Chandran, C. Vinod
    Ma, Qianli
    Uhlenbruck, Sven
    Bram, Martin
    Heitjans, Paul
    Guillon, Olivier
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) : 10617 - 10626
  • [34] Temperature effects on cycling stability of Li plating/stripping on Tadoped Li7La3Zr2O12
    Yonemoto, Fumihiro
    Nishimura, Atsuki
    Motoyama, Munekazu
    Tsuchimine, Nobuo
    Kobayashi, Susumu
    Iriyama, Yasutoshi
    JOURNAL OF POWER SOURCES, 2017, 343 : 207 - 215
  • [35] Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes
    Sugata, Shoichi
    Saito, Noriko
    Watanabe, Akio
    Watanabe, Ken
    Kim, Je-Deok
    Kitagawa, Kan
    Suzuki, Yosuke
    Honma, Itaru
    SOLID STATE IONICS, 2018, 319 : 285 - 290
  • [36] W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries
    Li, Yiqiu
    Wang, Zheng
    Cao, Yang
    Du, Fuming
    Chen, Cheng
    Cui, Zhonghui
    Guo, Xiangxin
    ELECTROCHIMICA ACTA, 2015, 180 : 37 - 42
  • [37] Thermodynamic properties of solid electrolyte Li7La3Zr2O12
    Il'ina, E. A.
    Raskovalov, A. A.
    Reznitskikh, O. G.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 128 : 68 - 73
  • [38] Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory
    Bonilla, Mauricio R.
    Garcia Daza, Fabian A.
    Carrasco, Javier
    Akhmatskaya, Elena
    ACTA MATERIALIA, 2019, 175 : 426 - 435
  • [39] Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes
    Tenhaeff, Wyatt E.
    Rangasamy, Ezhiyl
    Wang, Yangyang
    Sokolov, Alexei P.
    Wolfenstine, Jeff
    Sakamoto, Jeffrey
    Dudney, Nancy J.
    CHEMELECTROCHEM, 2014, 1 (02): : 375 - 378
  • [40] Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO)
    Rosenkiewitz, N.
    Schuhmacher, J.
    Bockmeyer, M.
    Deubener, J.
    JOURNAL OF POWER SOURCES, 2015, 278 : 104 - 108