Acoustic scattering by a sphere in the time domain

被引:8
作者
Martin, P. A. [1 ]
机构
[1] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
关键词
Wave equation; Similarity variables; Legendre polynomial; Laplace transform; TRANSIENT DIFFRACTION; GIBBS PHENOMENON; WAVE; PULSE; FIELD; RADIATION; EQUATION;
D O I
10.1016/j.wavemoti.2016.07.007
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A sound pulse is scattered by a sphere leading to an initial boundary value problem for the wave equation. A method for solving this problem is developed using integral representations involving Legendre polynomials in a similarity variable and Volterra integral equations. The method is compared and contrasted with the classical method, which uses Laplace transforms in time combined with separation of variables in spherical polar coordinates. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 42 条
[1]  
Abramowitz M, 1965, Handbook of Mathematical Functions
[2]   A perspective on the numerical treatment of Volterra equations [J].
Baker, CTH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :217-249
[3]   TRANSIENT DIFFRACTION OF SCALAR WAVES BY A FIXED SPHERE [J].
BARAKAT, RG .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1960, 32 (01) :61-66
[5]   APPLICATION OF CESARO MEAN TO TRANSIENT INTERACTION OF A SPHERICAL ACOUSTICAL WAVE AND A SPHERICAL ELASTIC SHELL [J].
BERGER, BS ;
KLEIN, D .
JOURNAL OF APPLIED MECHANICS, 1972, 39 (02) :623-&
[6]  
Bleistein N., 1986, Asymptotic Expansions of Integrals, Vsecond
[7]   Spherical harmonic representation of the electromagnetic field produced by a moving pulse of current density [J].
Borisov, VV ;
Manankova, AV ;
Utkin, AB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15) :4493-4514
[8]  
Brillouin J., 1950, ANN TELECOMMUN, V5, P179, DOI DOI 10.1007/BF03012054
[9]  
Brillouin J., 1950, ANN TELECOMMUN, V5, P160, DOI DOI 10.1007/BF03021484
[10]