ZERO DIVISOR GRAPH FOR THE RING OF GAUSSIAN INTEGERS MODULO n

被引:20
作者
Abu Osba, Emad [1 ]
Al-Addasi, Salah [2 ]
Abu Jaradeh, Nafiz [1 ]
机构
[1] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[2] Hashemite Univ, Fac Sci, Dept Math, Zarqa, Jordan
关键词
Bipartite graph; Complete graph; Diameter; Eulerian graph; Gaussian integers; Girth; Graph; Planar graph; Zero divisor graph;
D O I
10.1080/00927870802160859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the zero divisor graph for the ring of Gaussian integers modulo n, Gamma(Z(n)[i]). For each positive integer n, the number of vertices, the diameter, the girth and the case when the dominating number is 1 or 2 is found. Complete characterizations, in terms of n, are given of the cases in which Gamma(Z(n)[i]) is complete, complete bipartite, planar, regular or Eulerian.
引用
收藏
页码:3865 / 3877
页数:13
相关论文
共 7 条
[1]  
Abu Osba E, 2006, COMMENT MATH UNIV CA, V47, P1
[2]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]  
Axtell M, 2006, HOUSTON J MATH, V32, P985
[5]   THE EULER PHI-FUNCTION IN THE GAUSSIAN INTEGERS [J].
CROSS, JT .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (08) :518-528
[6]   Cycles and symmetries of zero-divisors [J].
Mulay, SB .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3533-3558
[7]  
Silverman J.H., 2006, A Friendly Introduction to Number Theory