AN IDENTITY OF THE SYMMETRY FOR THE SECOND KIND q-EULER POLYNOMIALS

被引:0
作者
Ryoo, C. S. [1 ]
机构
[1] Hannam Univ, Dept Math, Taejon 306791, South Korea
关键词
the second kind Euler numbers and polynomials; the second kind q-Euler numbers and polynomials; q-Euler numbers and polynomials; alternating sums;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By applying the symmetry of the fermionic p-adic q-integral on Z(p), we give recurrence identities the second kind q-Euler polynomials and the q-analogue of alternating sums of powers of consecutive odd integers.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 6 条
  • [1] A note on q-Euler and Genocchi numbers
    Kim, T
    Jang, LC
    Pak, HK
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (08) : 139 - 141
  • [2] On the Symmetries of the q-Bernoulli Polynomials
    Kim, Taekyun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [3] Rim S-H., 2006, B KOREAN MATH SOC, V43, P611
  • [4] Ryoo CS, 2010, J COMPUT ANAL APPL, V12, P828
  • [5] Some relationships between the analogs of Euler numbers and polynomials
    Ryoo, C. S.
    Kim, T.
    Jang, Lee-Chae
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [6] RYOO CHEON SEOUNG, 2009, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V12, P253