A rapid methods development workflow for high-throughput quantitative proteomic applications

被引:12
作者
Chen, Yan [1 ,2 ]
Vu, Jonathan [1 ,2 ]
Thompson, Mitchell G. [1 ,2 ,3 ]
Sharpless, William A. [1 ,2 ]
Chan, Leanne Jade G. [1 ,2 ]
Gin, Jennifer W. [1 ,2 ]
Keasling, Jay D. [1 ,2 ,4 ,5 ,6 ]
Adams, Paul D. [1 ,4 ,7 ]
Petzold, Christopher J. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA 94608 USA
[2] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[6] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Lyngby, Denmark
[7] Lawrence Berkeley Natl Lab, Mol Biophys & Bioimaging, Berkeley, CA USA
关键词
PSEUDOMONAS-PUTIDA KT2440; MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; RETENTION TIME; PEPTIDES; ASSAYS; REPRODUCIBILITY; RECOMMENDATIONS; QUANTIFICATION; PREDICTION;
D O I
10.1371/journal.pone.0211582
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent improvements in the speed and sensitivity of liquid chromatography-mass spectrometry systems have driven significant progress toward system-wide characterization of the proteome of many species. These efforts create large proteomic datasets that provide insight into biological processes and identify diagnostic proteins whose abundance changes significantly under different experimental conditions. Yet, these system-wide experiments are typically the starting point for hypothesis-driven, follow-up experiments to elucidate the extent of the phenomenon or the utility of the diagnostic marker, wherein many samples must be analyzed. Transitioning from a few discovery experiments to quantitative analyses on hundreds of samples requires significant resources both to develop sensitive and specific methods as well as analyze them in a high-throughput manner. To aid these efforts, we developed a workflow using data acquired from discovery proteomic experiments, retention time prediction, and standard-flow chromatography to rapidly develop targeted proteomic assays. We demonstrated this workflow by developing MRM assays to quantify proteins of multiple metabolic pathways from multiple microbes under different experimental conditions. With this workflow, one can also target peptides in scheduled/dynamic acquisition methods from a shotgun proteomic dataset downloaded from online repositories, validate with appropriate control samples or standard peptides, and begin analyzing hundreds of samples in only a few minutes.
引用
收藏
页数:16
相关论文
共 41 条
[1]   New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins [J].
Abbatiello, Susan ;
Ackermann, Bradley L. ;
Borchers, Christoph ;
Bradshaw, Ralph A. ;
Carr, Steven A. ;
Chalkley, Robert ;
Choi, Meena ;
Deutsch, Eric ;
Domon, Bruno ;
Hoofnagle, Andrew N. ;
Keshishian, Hasmik ;
Kuhn, Eric ;
Liebler, Daniel C. ;
MacCoss, Michael ;
MacLean, Brendan ;
Mani, D. R. ;
Neubert, Hendrik ;
Smith, Derek ;
Vitek, Olga ;
Zimmerman, Lisa .
MOLECULAR & CELLULAR PROTEOMICS, 2017, 16 (03) :327-328
[2]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[3]   Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry- based Assay Development Using a Fit- for- Purpose Approach [J].
Carr, Steven A. ;
Abbatiello, Susan E. ;
Ackermann, Bradley L. ;
Borchers, Christoph ;
Domon, Bruno ;
Deutsch, Eric W. ;
Grant, Russell P. ;
Hoofnagle, Andrew N. ;
Huettenhain, Ruth ;
Koomen, John M. ;
Liebler, Daniel C. ;
Liu, Tao ;
MacLean, Brendan ;
Mani, D. R. ;
Mansfield, Elizabeth ;
Neubert, Hendrik ;
Paulovich, Amanda G. ;
Reiter, Lukas ;
Vitek, Olga ;
Aebersold, Ruedi ;
Anderson, Leigh ;
Bethem, Robert ;
Blonder, Josip ;
Boja, Emily ;
Botelho, Julianne ;
Boyne, Michael ;
Bradshaw, Ralph A. ;
Burlingame, Alma L. ;
Chan, Daniel ;
Keshishian, Hasmik ;
Kuhn, Eric ;
Kinsinger, Christopher ;
Lee, Jerry S. H. ;
Lee, Sang-Won ;
Moritz, Robert ;
Oses-Prieto, Juan ;
Rifai, Nader ;
Ritchie, James ;
Rodriguez, Henry ;
Srinivas, Pothur R. ;
Townsend, R. Reid ;
Van Eyk, Jennifer ;
Whiteley, Gordon ;
Wiita, Arun ;
Weintraub, Susan .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (03) :907-917
[4]   Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry [J].
Collins, Ben C. ;
Hunter, Christie L. ;
Liu, Yansheng ;
Schilling, Birgit ;
Rosenberger, George ;
Bader, Samuel L. ;
Chan, Daniel W. ;
Gibson, Bradford W. ;
Gingras, Anne-Claude ;
Held, Jason M. ;
Hirayama-Kurogi, Mio ;
Hou, Guixue ;
Krisp, Christoph ;
Larsen, Brett ;
Lin, Liang ;
Liu, Siqi ;
Molloy, Mark P. ;
Moritz, Robert L. ;
Ohtsuki, Sumio ;
Schlapbach, Ralph ;
Selevsek, Nathalie ;
Thomas, Stefani N. ;
Tzeng, Shin-Cheng ;
Zhang, Hui ;
Aebersold, Ruedi .
NATURE COMMUNICATIONS, 2017, 8
[5]   A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data [J].
Costello, Zak ;
Garcia Martin, Hector .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2018, 4
[6]   A Skyline Plugin for Pathway-Centric Data Browsing [J].
Degan, Michael G. ;
Ryadinskiy, Lillian ;
Fujimoto, Grant M. ;
Wilkins, Christopher S. ;
Lichti, Cheryl F. ;
Payne, Samuel H. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (11) :1752-1757
[7]   Using iRT, a normalized retention time for more targeted measurement of peptides [J].
Escher, Claudia ;
Reiter, Lukas ;
MacLean, Brendan ;
Ossola, Reto ;
Herzog, Franz ;
Chilton, John ;
MacCoss, Michael J. ;
Rinner, Oliver .
PROTEOMICS, 2012, 12 (08) :1111-1121
[8]   PASSEL: The PeptideAtlas SRM experiment library [J].
Farrah, Terry ;
Deutsch, Eric W. ;
Kreisberg, Richard ;
Sun, Zhi ;
Campbell, David S. ;
Mendoza, Luis ;
Kusebauch, Ulrike ;
Brusniak, Mi-Youn ;
Huettenhain, Ruth ;
Schiess, Ralph ;
Selevsek, Nathalie ;
Aebersold, Ruedi ;
Moritz, Robert L. .
PROTEOMICS, 2012, 12 (08) :1170-1175
[9]   Standard flow liquid chromatography for shotgun proteomics in bioenergy research [J].
Fernandez-Nino, Susana M. Gonzalez ;
Smith-Moritz, A. Michelle ;
Chan, Leanne Jade G. ;
Adams, Paul D. ;
Heazlewood, Joshua L. ;
Petzold, Christopher J. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
[10]   Prediction of high-responding peptides for targeted protein assays by mass spectrometry [J].
Fusaro, Vincent A. ;
Mani, D. R. ;
Mesirov, Jill P. ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (02) :190-198