The Effect of Calcination on Multi-Walled Carbon Nanotubes Produced by Dc-Arc Discharge

被引:5
作者
Pillai, Sreejarani K. [1 ]
Augustyn, Willem G. [2 ]
Rossouw, Margaretha H. [3 ]
McCrindle, Robert I. [2 ]
机构
[1] CSIR, Natl Ctr Nanostruct Mat, ZA-0001 Pretoria, South Africa
[2] Tshwane Univ Technol, Dept Chem, ZA-0001 Pretoria, South Africa
[3] Nat Metrol Inst S Africa, ZA-0001 Pretoria, South Africa
关键词
Multi-Walled Carbon Nanotubes; Calcination; Morphology;
D O I
10.1166/jnn.2008.115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.
引用
收藏
页码:3539 / 3544
页数:6
相关论文
共 31 条
[1]   CAPILLARITY-INDUCED FILLING OF CARBON NANOTUBES [J].
AJAYAN, PM ;
IIJIMA, S .
NATURE, 1993, 361 (6410) :333-334
[2]   PREPARATION OF CARBON NANOTUBES BY ARC-DISCHARGE EVAPORATION [J].
ANDO, Y ;
IIJIMA, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1993, 32 (1A-B) :L107-L109
[3]   Purification of single-wall carbon nanotubes by microfiltration [J].
Bandow, S ;
Rao, AM ;
Williams, KA ;
Thess, A ;
Smalley, RE ;
Eklund, PC .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (44) :8839-8842
[4]   Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD [J].
Chen, XH ;
Chen, CS ;
Chen, Q ;
Cheng, FQ ;
Zhang, G ;
Chen, ZZ .
MATERIALS LETTERS, 2002, 57 (03) :734-738
[5]   Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process) [J].
Chiang, IW ;
Brinson, BE ;
Huang, AY ;
Willis, PA ;
Bronikowski, MJ ;
Margrave, JL ;
Smalley, RE ;
Hauge, RH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (35) :8297-8301
[6]   GROWTH AND SINTERING OF FULLERENE NANOTUBES [J].
COLBERT, DT ;
ZHANG, J ;
MCCLURE, SM ;
NIKOLAEV, P ;
CHEN, Z ;
HAFNER, JH ;
OWENS, DW ;
KOTULA, PG ;
CARTER, CB ;
WEAVER, JH ;
RINZLER, AG ;
SMALLEY, RE .
SCIENCE, 1994, 266 (5188) :1218-1222
[7]   Nanotube nanodevice [J].
Collins, PG ;
Zettl, A ;
Bando, H ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 278 (5335) :100-103
[8]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[9]   Different purification methods of carbon nanotubes produced by catalytic synthesis [J].
Colomer, JF ;
Piedigrosso, P ;
Fonseca, A ;
Nagy, JB .
SYNTHETIC METALS, 1999, 103 (1-3) :2482-2483
[10]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180