Crack path prediction using the natural neighbour radial point interpolation method

被引:28
作者
Azevedo, J. M. C. [1 ]
Belinha, J. [2 ]
Dinis, L. M. J. S. [1 ]
Natal Jorge, R. M. [1 ]
机构
[1] Univ Porto, Fac Engn, FEUP, P-4200465 Oporto, Portugal
[2] Inst Mech Engn & Ind Management, INEGI, P-4200465 Oporto, Portugal
关键词
Meshless methods; Fracture mechanics; Elastic fracture; Crack opening path; NNRPIM; FINITE-ELEMENT-METHOD; FREE GALERKIN METHODS; SMOOTHED PARTICLE HYDRODYNAMICS; ENRICHED WEIGHT-FUNCTIONS; MESHLESS METHOD; REMODELING ANALYSIS; PLATES; PROPAGATION; GROWTH; IMPLEMENTATION;
D O I
10.1016/j.enganabound.2015.06.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the most challenging problems in computational mechanics is the prediction of the crack propagation path. In this work, the Natural Neighbour Radial Point Interpolation Method (NNRPIM), an efficient meshless method, is extended to the field of fracture mechanics. Since the NNRPIM relies on the Natural Neighbour mathematical concept to obtain the integration mesh and establish the nodal connectivity, the NNRPIM only requires a computational nodal distribution to fully discretise the problem domain. The Radial Point Interpolators (RPI) are used to construct the NNRPIM interpolation functions. Taking advantage of the unique features of the NNRPIM, in this work, the crack propagation path is numerically simulated using an adapted crack path opening algorithm, in which the crack is iteratively extended in line segments. In each iteration, using the obtained stress field, the crack propagation direction is determined using the maximum circumferential stress criterion. Due to the flexibility of the natural neighbour concept, the increase of the domain discontinuities do not represent a numerical difficulty. In the end, several crack opening path benchmark examples are solved in order to show the efficiency of the proposed numerical approach. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 158
页数:15
相关论文
共 64 条
[1]  
Aliabadi MH, 1991, NUMERICAL FRACTURE M, P280
[2]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[3]  
Beliën JAM, 2012, CELLULAR IMAGING TECHNIQUES FOR NEUROSCIENCE AND BEYOND, P1, DOI [10.1080/10255842.2012.654783, 10.1016/B978-0-12-385872-6.00001-5]
[4]   Nonlinear analysis of plates and laminates using the element free Galerkin method [J].
Belinha, J. ;
Dinis, L. M. J. S. .
COMPOSITE STRUCTURES, 2007, 78 (03) :337-350
[5]   THE MANDIBLE REMODELING INDUCED BY DENTAL IMPLANTS: A MESHLESS APPROACH [J].
Belinha, J. ;
Dinis, L. M. J. S. ;
Jorge, R. M. Natal .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2015, 15 (04)
[6]   Analysis of thick plates by the natural radial element method [J].
Belinha, J. ;
Dinis, L. M. J. S. ;
Natal Jorge, R. M. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 76 :33-48
[7]   Composite laminated plate analysis using the natural radial element method [J].
Belinha, J. ;
Dinis, L. M. J. S. ;
Jorge, R. M. Natal .
COMPOSITE STRUCTURES, 2013, 103 :50-67
[8]   The natural radial element method [J].
Belinha, J. ;
Dinis, L. M. J. S. ;
Natal Jorge, R. M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (12) :1286-1313
[9]   Bone tissue remodelling analysis considering a radial point interpolator meshless method [J].
Belinha, J. ;
Natal Jorge, R. M. ;
Dinis, L. M. J. S. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (11) :1660-1670
[10]  
Belinha J., 2014, Lecture Notes in Computational Vision and Biomechanics, V1, P320