Multi-sensor Fusion Method based on Artificial Neural Network for Mobile Robot Self-localization

被引:12
作者
Magrin, Carlos Eduardo [1 ]
Todt, Eduardo [1 ]
机构
[1] Univ Fed Parana, Dept Comp Sci, Curitiba, Parana, Brazil
来源
2019 LATIN AMERICAN ROBOTICS SYMPOSIUM, 2019 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR) AND 2019 WORKSHOP ON ROBOTICS IN EDUCATION (LARS-SBR-WRE 2019) | 2019年
关键词
multi-sensor; sensor fusion; mobile robot; self-localization; neural network;
D O I
10.1109/LARS-SBR-WRE48964.2019.00032
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents a hierarchical sensor fusion (HSF) method with an artificial neural network (ANN) to solve the problem of mobile robot self-localization with sonars octagon, digital compass, and wireless network signal strength measure to determine the location of an autonomous mobile robot. The multilayer perceptron (MLP) is used with supervised learning, backpropagation technique, to train the network in hierarchical fusion step and determine the robot localization in a map. In order to validate this work, a comparison between the HSF methods, artificial intelligence, and the matching algorithm, using the same training and testing UFPR-RSFM Dataset. Finally, the HSF method with artificial intelligence technique can determine the robot localization in a different indoor environment, using low-cost sensors, and support the relevance of hierarchical sensor fusion in mobile robot localization.
引用
收藏
页码:138 / 143
页数:6
相关论文
共 14 条
[1]  
Bishop C.M., 1995, Neural networks for pattern recognition
[2]  
Carvalho F, 2012, IEEE INT CONF MOB
[3]  
Duda R., 1973, Pattern Classification and Scene Analysis
[4]  
Dunne R. A., 2007, STAT APPROACH NEURAL, DOI 10.1002/9780470148150
[5]   Hierarchical Sensor Fusion Method based on Fingerprint kNN and Fuzzy Features Weighting for Indoor Localization of a Mobile Robot Platform [J].
Eduardo, Carlos ;
Magrin, Setenareski ;
Todt, Eduardo .
PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, :305-310
[6]   Sensor fusion for mobile robot navigation [J].
Kam, M ;
Zhu, XX ;
Kalata, P .
PROCEEDINGS OF THE IEEE, 1997, 85 (01) :108-119
[7]   Multisensor data fusion: A review of the state-of-the-art [J].
Khaleghi, Bahador ;
Khamis, Alaa ;
Karray, Fakhreddine O. ;
Razavi, Saiedeh N. .
INFORMATION FUSION, 2013, 14 (01) :28-44
[8]  
Kunemund F., 2009, 2009 IEEE INT WORKSH
[9]   MULTISENSOR INTEGRATION AND FUSION IN INTELLIGENT SYSTEMS [J].
LUO, RC ;
KAY, MG .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05) :901-931
[10]  
Magrin C. E., 2019, UFPR RSFM DATASET RS